Skip to main content
Log in

Application of general regression neural network in identifying interfacial parameters under mixed-mode fracture

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

It is generally accepted that the cohesive zone model is a common and highly effective method for simulating interlaminar damage in multilayer materials or structures. However, difficulties are encountered in identifying the interfacial parameters of the cohesive zone model, since it is time-consuming and expensive to experimentally obtain these parameters. Especially, some engineering materials or components under real engineering conditions cannot be measured directly. In this paper, based on the bilinear traction–separation relation of coupled mixed-mode cohesive law, a machine learning-based approach is constructed to identify the cohesive interfacial parameters by using the general regression neural network. No separate measurements are required, and seven independent interfacial parameters in mixed-mode fracture problems can be conveniently determined through machine learning-based analysis. In this case, only an experimental force–displacement curve is needed. A numerical example under a mixed-mode displacement load is considered to validate the proposed method. The results show that this machine learning-based approach provides an effective and general pathway to identify the interfacial parameters under mixed-mode fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rodriguez-Garcia, V., Herraez, M., Martinez, V., de Villoria, R.G.: Interlaminar and translaminar fracture toughness of automated manufactured bio-inspired CFRP laminates. Compos. Sci. Technol. 219, 109236 (2022)

    Article  Google Scholar 

  2. Lu, S.Z., Dong, H.J., Yu, H.L.: Interlaminar damage assessment method of CFRP laminate based on synchrosqueezed wavelet transform and ensemble principal component analysis. Compos. Struct. 276, 114584 (2021)

    Article  Google Scholar 

  3. Mohammed, Y., Hassan, Mohamed K., Abu El-Ainin, H., Hashem, A.M.: Size effect analysis of open-hole glass fiber composite laminate using two-parameter cohesive laws. Acta Mech. 226, 1027–1044 (2015)

  4. Mei, H.X., Pang, Y.Y., Huang, R.: Influence of interfacial delamination on channel cracking of elastic thin films. Int. J. Fract. 148(4), 331–342 (2007)

    Article  MATH  Google Scholar 

  5. Beom, H.G., Jang, H.S., Zhuo, X.R.: Debonding of the interface between a thin film and an orthotropic substrate. Eng. Fract. Mech. 124, 217–233 (2014)

    Article  Google Scholar 

  6. Fang, C., Guo, X., Weng, G.J., Li, J.H., Chen, G.: Simulation of ductile fracture of zirconium alloys based on triaxiality dependent cohesive zone model. Acta Mech. 232, 3723–3736 (2021)

    Article  MATH  Google Scholar 

  7. Zhu, M., Wang, Y., Wang, C., Chen, F., Liu, Y.: An improved analytical model for inversely determining multiple interfacial parameters from single fiber micro-Raman and fragmentation tests. Compos. Sci. Technol. 214, 108983 (2021)

    Article  Google Scholar 

  8. Shindo, Y., Narita, F., Sato, T.: Analysis of mode II interlaminar fracture and damage behavior in end notched flexure testing of GFRP woven laminates at cryogenic temperatures. Acta Mech. 187, 231–240 (2006)

    Article  MATH  Google Scholar 

  9. Dhanesh, N., Kapuria, S., Achary, G.G.S.: Accurate prediction of three-dimensional free edge stress field in composite laminates using mixed-field multiterm extended Kantorovich method. Acta Mech. 228, 2895–2919 (2017)

    Article  MathSciNet  Google Scholar 

  10. Comninou, M.: The interface crack. J. Appl. Mech. 44, 631–636 (1977)

    Article  MATH  Google Scholar 

  11. Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8(2), 100–104 (1960)

    Article  Google Scholar 

  12. Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)

    Article  MathSciNet  Google Scholar 

  13. Zhao, G.H., Zhong, J.J., Feng, C., Liang, Z.: Simulation of ultra-low cycle fatigue cracking of coiled tubing steel based on cohesive zone model. Eng. Fract. Mech. 235, 107201 (2020)

    Article  Google Scholar 

  14. Long, H., Liang, L., Wei, Y.: Failure characterization of solid structures based on an equivalence of cohesive zone model. Int. J. Solids. Struct. 163, 194–210 (2019)

    Article  Google Scholar 

  15. Fan, M., Xiao, Z.M., Luo, J.: Application of cohesive zone model in crack propagation analysis in multiphase composite materials. Mech. Adv. Mater. Struct. 24(13), 1109–1115 (2017)

    Article  Google Scholar 

  16. Irwin, G.R.: In: Fracture Dynamics. Fracturing of Metals, ASM Publication, 147–166 (1948)

  17. Xu, X.P., Needleman, A.: Void nucleation by inclusion debonding in a crystal matrix. Model. Simul. Mater. Sci. Eng. 1(2), 111–132 (1993)

    Article  Google Scholar 

  18. Xu, X.P., Needleman, A.: Numerical simulation of fast crack growth in brittle solids. J. Mech. Phys. Solids 42(9), 1397–1434 (1994)

    Article  MATH  Google Scholar 

  19. Xu, X.P., Needleman, A.: Analysis of ductile crack growth by means of a cohesive damage model. Int. J. Fract. 81(2), 99–112 (1995)

    Google Scholar 

  20. Mi, Y., Crisfield, M.A., Davies, G.A.O., Hellweg, H.B.: Progressive delamination using interface elements. J. Compos. Mater. 32(4), 1246–1272 (1998)

    Article  Google Scholar 

  21. Guo, X., Chang, K., Chen, L.Q., Zhou. M.: Determination of fracture toughness of AZ31 Mg alloy using the cohesive finite element method. Eng. Fract. Mech. 96(1), 401–415 (2012)

  22. Guo, X., Weng, G.J., Soh, A.K.: Ductility enhancement of layered stainless steel with nanograined interface layers. Comput. Mater. Sci. 55(3), 350–355 (2012)

    Article  Google Scholar 

  23. Tvergaard, V., Hutchinson, J.W.: The relation between crack growth resistance and fracture process parameters in elasticplastic solids. J. Mech. Phys. Solids 40(6), 1377–1397 (1992)

    Article  MATH  Google Scholar 

  24. Camacho, G.T., Ortiz, M.: Computational modelling of impact damage in brittle materials. Int. J. Solids. Struct. 33(20–22), 2899–2938 (1996)

    Article  MATH  Google Scholar 

  25. Needleman, A.: A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. 54(3), 525–531 (1987)

    Article  MATH  Google Scholar 

  26. Cornec, A., Scheider, I., Schwalbe, K.H.: On the practical application of the cohesive model. Eng. Fract. Mech. 70(14), 1963–1987 (2003)

    Article  Google Scholar 

  27. Li, S., Thouless, M.D., Waas, A.M., Schroeder, J.A., Zavattieri, P.D.: Use of a cohesive-zone model to analyze the fracture of a fiber-reinforced polymer-matrix composite. Compos. Sci. Technol. 65(3–4), 537–549 (2005)

    Article  Google Scholar 

  28. Ramantani, D.A., de Moura, M.F.S.F., Campilho, R.D.S.G., Marques, A.T.: Fracture characterization of sandwich structures interfaces under mode I loading. Compos. Sci. Technol. 70(9), 1386–1394 (2010)

    Article  Google Scholar 

  29. Liu, C., et al.: Mode II fracture toughness related to ply angle for composite delamination analysis. Mech. Adv. Mater. Struct. 28(23), 2417–2428 (2020)

    Article  Google Scholar 

  30. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. ASTM International (2007)

  31. Reeder, J.R., Demarco, K., Whitley, K.S: The use of doubler reinforcement in delamination toughness testing. Compos. Part A 35(11), 1337–1344 (2004)

  32. Sorensen, B.F., Goutianos, S., Jacobsen, T.K.: Strength scaling of adhesive joints in polymer-matrix composites. Int. J. Solids Struct. 46(3–4), 741–761 (2009)

    Article  MATH  Google Scholar 

  33. Vorel, J., Kabele, P.: Inverse analysis of traction-separation relationship based on sequentially linear approach. Comput. Struct. 212(2), 125–136 (2019)

    Article  Google Scholar 

  34. Dreysse, H., Demangeat, C.: Theoretical approaches of magnetism of transition-metal thin films and nanostructures on semi-infinite substrate. Surf. Sci. Rep. 28(34), 65–122 (1997)

    Article  Google Scholar 

  35. Camanho, P.P., Davila, C.G., de Moura, M.F.: Numerical simulation of mixed-mode progressive delamination in composite materials. J. Compos. Mater. 37, 1415–1438 (2003)

    Article  Google Scholar 

  36. Alfredsson, K.S., Högberg, J.L.: Energy release rate and mode-mixity of adhesive joint specimens. Int. J. Fract. 144(4), 267–283 (2007)

    Article  Google Scholar 

  37. Zhou, Q.C., Ju, Y.T., Wei, Z., Han, B., Zhou, C.S.: Cohesive zone modeling of propellant and insulation interface debonding. J. Adhesion 90(3), 230–251 (2014)

    Article  Google Scholar 

  38. Wang, J., Kang, Y.L., Qin, Q.H., Fu, D.H., Li, X.Q.: Identification of time-dependent interfacial mechanical properties of adhesive by hybrid/inverse method. Comput. Mater. Sci. 43(4), 1160–1164 (2008)

    Article  Google Scholar 

  39. Dourado, N., de Moura, M.F.S.F., de Morais, A.B., Pereira, A.B.: Bilinear approximations to the mode II delamination cohesive law using an inverse method. Mech. Mater. 49, 42–50 (2012)

    Article  Google Scholar 

  40. Su, M., Peng, H., Yuan, M., Li, S.F.: Identification of the interfacial cohesive law parameters of FRP strips externally bonded to concrete using machine learning techniques. Eng. Fract. Mech. 247, 107643 (2021)

    Article  Google Scholar 

  41. Sadeghi, F., Yu, Y., Zhu, X.Q., Li, J.C.: Damage identification of steel-concrete composite beams based on modal strain energy changes through general regression neutral network. Eng. Struct. 244, 112824 (2021)

    Article  Google Scholar 

  42. Specht, D.F.: A general regression neural network. IEEE Trans. Neural Netw. 2(6), 568–576 (1991)

    Article  Google Scholar 

  43. Krajcinovic, D., Fonseka, G.U.: The continuous damage theory of brittle materials. J. Appl. Mech. 48, 809–815 (1981)

    Article  MATH  Google Scholar 

  44. Ungsuwarungsri, T., Knauss, W.G.: The role of damage-softened material behaviour in the fracture of composites and adhesives. Int. J. Fract. 35, 221–241 (1987)

    Article  Google Scholar 

  45. Cui, W., Wisnom, M.R., Jones, M.: A comparison of failure criteria to predict delamination of unidirectional glass/epoxy specimens waisted through the thickness. Composites 23(3), 158–166 (1992)

    Article  Google Scholar 

  46. Mohammadi, S., Owen, D.R.J., Peric, D.: A combined finite/discrete element algorithm for delamination analysis of composites. Finite Elem. Anal. Des. 28, 321–336 (1998)

    Article  MATH  Google Scholar 

  47. Ding, S., Chang, X.H., Wu, Q.H.: A study on approximation performances of general regression neural network. In: Machinery Electronics and Control Engineering III, editor Li, J.F. 441, 713–716 (2014)

  48. Huang, L.N., Nan, J.C.: Researches on GRNN neural network in RF nonlinear systems modeling. In: 2011 International Conference on Computational Problem-Solving, 21–23 Oct. 577–580. Chengdu, China (2011)

  49. Chang, H.Y., Wen, C.H., Pan, W.T.: Prediction of the return of common fund through general regression neural network. J. Stat. Manag. Syst. 13(3), 627–637 (2010)

    Google Scholar 

  50. Mei, A.K.C.: Applying the general regression neural network to forecast stock closing price. J. Stat. Manag. Syst. 13(3), 639–649 (2010)

    Google Scholar 

  51. Tomandl, D., Schober, A.: A modified general regression neural network (MGRNN) with new, efficient training algorithms as a robust ’black box’-tool for data analysis. Neural Netw. 14(8), 1023–1034 (2001)

    Article  Google Scholar 

  52. Chtioui, Y., Panigrahi, S., Francl, L.: A generalized regression neural network and its application for leaf wetness prediction to forecast plant disease. Chemom. Intell. Lab. Syst. 48(1), 47–58 (1999)

    Article  Google Scholar 

  53. Bengio, Y., Grandvalet, Y.: No unbiased estimator of the variance of k-fold cross-validation. J. Mach. Learn. Res. 5, 1089–1105 (2004)

    MathSciNet  MATH  Google Scholar 

  54. Bednarz, P.: Finite element simulation of stress evolution in thermal barrier coating systems. Aachen, Forschungszentrum Julich GmbH (2006)

  55. Li, Y., Deng, H.X., Yu, Y.H.: Evaluation of interfacial properties of sisal fiber reinforced high density polyethylene (HDPE) composites. Advances in Composite Materials and Structures in Key Eng. Mater. 334–335(PTS1-2), 625–628 (2007)

  56. Fan, M., Yi, D.K., Xiao, Z.M.: Elastic-plastic stress investigation for an arc-shaped interface crack in composite material. Int. J. Mech. Sci. 83, 104–111 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12002256, 11772245), the Fundamental Research Funds for the Central Universities in China (No. xjh012020014), and the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2020JQ-011), the Exploration Program-Q of Natural Science Foundation in Zhejiang (Program No. LQ20A020010), the Natural Science Foundation of Jiangsu (No: BK20200246), and funded by China Postdoctoral Science Foundation (No. 2020M673374). The author Qun Li gratefully acknowledges the support of the K.C. Wong Education Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Qun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junling, H., Xuan, L. & Qun, L. Application of general regression neural network in identifying interfacial parameters under mixed-mode fracture. Acta Mech 233, 3909–3921 (2022). https://doi.org/10.1007/s00707-022-03296-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03296-2

Navigation