Skip to main content
Log in

Finite element modeling and analysis of piezoelectric nanoporous metal foam nanobeam under hygro and nonlinear thermal field

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The present article studies the finite element modeling of wave propagation characteristics in a nonlinear thermal piezoelectric hygroscopic nanoporous metal foam nanobeam. The symmetry 1, symmetry 2, and uniform type of nanoporosity patterns are employed in this study. The controlling equation of motion is derived via a modified trigonometric beam model in higher order. The effect of a piezo electric field is incorporated with the governing equations by convoluting field quantities and displacement components. The Rayleigh–Ritz finite element method is adopted to observe the dynamic response of the nanobeam. Comparison studies are performed to display the accuracy and efficiency of this analytical model. Further, the effects of piezoelectric strain, porosity coefficient, moisture concentration, slenderness ratio, and thickness to diameter ratio on the critical buckling load of metal foam nanobeams are thoroughly investigated and highlighted by Tables and dispersion curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Darban, H., Luciano, R., Caporale, A., Fabbrocino, F.: Higher modes of buckling in shear deformable nanobeams. Int. J. Eng. Sci. 154, 103338 (2020). https://doi.org/10.1016/j.ijengsci.2020.103338

    Article  MathSciNet  MATH  Google Scholar 

  2. Li, L., Tang, H., Hu, Y.: The effect of thickness on the mechanics of nanobeams. Int. J. Eng. Sci. 123, 81–91 (2018). https://doi.org/10.1016/j.ijengsci.2017.11.021

    Article  MathSciNet  MATH  Google Scholar 

  3. Attia, M.A.: On the mechanics of functionally graded nanobeams with the account of surface elasticity. Int. J. Eng. Sci. 115, 73–101 (2017). https://doi.org/10.1016/j.ijengsci.2017.03.011

    Article  MathSciNet  MATH  Google Scholar 

  4. Attia, M.A., Abdel Rahman, A.: On vibrations of functionally graded viscoelastic nanobeams with surface effects. Int. J. Eng. Sci. 127, 1–32 (2018). https://doi.org/10.1016/j.ijengsci.2018.02.005

    Article  MathSciNet  MATH  Google Scholar 

  5. Khaniki, H.B.: On vibrations of FG nanobeams. Int. J. Eng. Sci. 135, 23–36 (2019). https://doi.org/10.1016/j.ijengsci.2018.11.002

    Article  MathSciNet  MATH  Google Scholar 

  6. Hadi, A., Zamani Nejad, M., Hosseini, M.: Vibrations of three-dimensionally graded nanobeams. Int. J. Eng. Sci. 128, 12–23 (2018). https://doi.org/10.1016/j.ijengsci.2018.03.004

    Article  MathSciNet  MATH  Google Scholar 

  7. Almitani, K.H., Abdelrahman, A.A., Eltaher, M.A.: Stability of perforated nanobeams incorporating surface energy effects. Steel Compos. Struct. 35, 555–566 (2020). https://doi.org/10.12989/scs.2020.35.4.555

    Article  Google Scholar 

  8. Karami, B., Shahsavari, D., Janghorban, M., Li, L.: Wave dispersion of nanobeams incorporating stretching effect. Waves Random Complex Media. (2019). https://doi.org/10.1080/17455030.2019.1607623

    Article  MATH  Google Scholar 

  9. Ebrahimi, F., Barati, M.R.: Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment. J. Vib. Control. 24, 549–564 (2018). https://doi.org/10.1177/1077546316646239

    Article  MathSciNet  Google Scholar 

  10. Ebrahimi, F., Kokaba, M., Shaghaghi, G., Selvamani, R.: Dynamic characteristics of hygro-magneto-thermo-electrical nanobeam with non-ideal boundary conditions. Adv. Nano Res. 8(2), 169–182 (2020). https://doi.org/10.12989/anr.2020.8.2.169

    Article  Google Scholar 

  11. Alibeigi, B., Tadi Beni, Y., Mehralian, F.: On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams. Eur. Phys. J. Plus. 133, 1–18 (2018). https://doi.org/10.1140/epjp/i2018-11954-7

    Article  Google Scholar 

  12. Ebrahimi, F., Karimiasl, M., Selvamani, R.: Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading. Adv. Nano Res. 8(3), 203–214 (2020). https://doi.org/10.12989/anr.2020.8.3.203

    Article  Google Scholar 

  13. Shariati, A., Ebrahimi, F., Karimiasl, M., Selvamani, R., Toghroli, A.: On bending characteristics of smart magneto-electro-piezoelectric nanobeams system. Adv. Nano Res. 9, 183–191 (2020). https://doi.org/10.12989/anr.2020.9.3.183

    Article  Google Scholar 

  14. Arefi, M., Zenkour, A.: Size dependent vibration and bending analyses of the piezomagnetic three-layer nanobeams. Appl. Phys. A. (2017). https://doi.org/10.1007/s00339-017-0801-0

    Article  Google Scholar 

  15. Yue, Y., Xu, K., Zhang, X., Wang, W.: Effect of surface stress and surface-induced stress on behavior of piezoelectric nanobeam. Appl. Math. Mech. Engl. Ed. 39, 953–966 (2018). https://doi.org/10.1007/s10483-018-2346-8

    Article  MathSciNet  MATH  Google Scholar 

  16. Chu, L., Dui, G., Ju, C.: Flexoelectric effect on the bending and vibration responses of functionally graded piezoelectric nanobeams based on general modified strain gradient theory. Compos. Struct. 186, 39–49 (2018). https://doi.org/10.1016/j.compstruct.2017.10.083

    Article  Google Scholar 

  17. Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S., Alshorbagy, A.E.: Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts. Smart Struct. Syst. 25(2), 219–228 (2020). https://doi.org/10.12989/sss.2020.25.2.219

    Article  Google Scholar 

  18. Ebrahimi, F., Barati, M.R.: Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium. J Braz. Soc. Mech. Sci. Eng. 39, 937–952 (2017). https://doi.org/10.1007/s40430-016-0551-5

    Article  Google Scholar 

  19. Fan, T.: An energy harvester with nanoporous piezoelectric double-beam structure. Acta Mech. 233, 1083–1098 (2022). https://doi.org/10.1007/s00707-022-03154-1

    Article  MathSciNet  MATH  Google Scholar 

  20. Çiğdem, D., Civalek, O.: On the analysis of microbeams. Int. J. Eng. Sci. 121, 14–33 (2017). https://doi.org/10.1016/j.ijengsci.2017.08.016

    Article  MathSciNet  MATH  Google Scholar 

  21. Numanoğlu, H.M., Akgöz, B., Civalek, O.: On dynamic analysis of nanorods. Int. J. Eng. Sci. 130, 33–50 (2018). https://doi.org/10.1016/j.ijengsci.2018.05.001

    Article  Google Scholar 

  22. Akgöz, B., Civalek, Ö.: A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech. 226, 2277–2294 (2015). https://doi.org/10.1007/s00707-015-1308-4

    Article  MathSciNet  MATH  Google Scholar 

  23. Numanoglu, H., Ersoy, H., Akgöz, B., Civalek, Ö.: A new eigenvalue problem solver for thermo-mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method. Math. Methods Appl. Sci. (2022). https://doi.org/10.1002/mma.7942

    Article  MathSciNet  Google Scholar 

  24. Akgöz, B., Civalek, O.: A size-dependent shear deformation beam model based on the strain gradient elasticity theory. Int. J. Eng. Sci. 70, 1–14 (2013). https://doi.org/10.1016/j.ijengsci.2013.04.004

    Article  MathSciNet  MATH  Google Scholar 

  25. Akgöz, B., Civalek, O.: Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium. Int. J. Eng. Sci. 85, 90–104 (2014). https://doi.org/10.1016/j.ijengsci.2014.08.011

    Article  Google Scholar 

  26. Akgöz, B., Civalek, Ö.: Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. J. Vib. Control 20, 606–616 (2014). https://doi.org/10.1177/1077546312463752

    Article  MathSciNet  Google Scholar 

  27. Akgöz, B., Civalek, O.: A novel microstructure-dependent shear deformable beam model. Int. J. Mech. Sci. 99, 10–20 (2015). https://doi.org/10.1016/j.ijmecsci.2015.05.003

    Article  MATH  Google Scholar 

  28. Nazemizadeh, M., Bakhtiari-Nejad, F., Assadi, A., Shahriari, B.: Nonlinear vibration of piezoelectric laminated nanobeams at higher modes based on nonlocal piezoelectric theory. Acta Mech. (2020). https://doi.org/10.1007/s00707-020-02736-1

    Article  MathSciNet  MATH  Google Scholar 

  29. Civalek, O., Uzun, B., Yayli, M.: Stability analysis of nanobeams placed in electromagnetic field using a finite element method. Arab. J. Geosci. (2020). https://doi.org/10.1007/s12517-020-06188-8

    Article  Google Scholar 

  30. Merzouki, T., Houari, M., Haboussi, M., Aicha, B., Ganapathi, M.: Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-01156-y

    Article  Google Scholar 

  31. Ebrahimi, F., Dabbagh, A.: Vibration analysis of graphene oxide powder-/carbon fiber-reinforced multi-scale porous nanocomposite beams: a finite-element study. Eur. Phys. J. Plus 134, 225 (2019). https://doi.org/10.1140/epjp/i2019-12594-1

    Article  Google Scholar 

  32. Jankowski, P., Zur, K., Kim, J., Reddy, J.N.: On the bifurcation buckling and vibration of porous nanobeams. Compos. Struct. 250, 112632 (2020). https://doi.org/10.1016/j.compstruct.2020.112632

    Article  Google Scholar 

  33. Barati, M.R., Zenkour, A.: Investigating post-buckling of geometrically imperfect metal foam nanobeams with symmetric and asymmetric porosity distributions. Compos. Struct. (2017). https://doi.org/10.1016/j.compstruct.2017.09.008

    Article  Google Scholar 

  34. Wang, Y., Liang, C.: Wave propagation characteristics in nanoporous metal foam nanobeams. Results Phys. 12, 287–297 (2019). https://doi.org/10.1016/j.rinp.2018.11.080

    Article  Google Scholar 

  35. Ebrahimi, F., Seyfi, A.: A wave propagation study for porous metal foam beams resting on an elastic foundation. Waves Random Comp. Med. (2021). https://doi.org/10.1080/17455030.2021.1905909

    Article  Google Scholar 

  36. Sahmani, S., Fattahi, A.M., Ahmed, N.A.: Develop a refined truncated cubic lattice structure for nonlinear large-amplitude vibrations of micro/nano-beams made of nanoporous materials. Eng. Comput. 36, 359–375 (2020). https://doi.org/10.1007/s00366-019-00703-6

    Article  Google Scholar 

  37. Liu, H., Liu, H., Yang, J.: Vibration of FG magneto-electro-viscoelastic porous nanobeams on visco-Pasternak foundation. Compos. B. Eng. 155, 244–256 (2018). https://doi.org/10.1016/j.compositesb.2018.08.042

    Article  Google Scholar 

  38. She, G.L., Ren, Y.R., Yan, K.M.: On snap-buckling of porous FG curved nanobeams. Acta Astronaut. 161, 475–484 (2019). https://doi.org/10.1016/j.actaastro.2019.04.010

    Article  Google Scholar 

  39. She, G.L., Liu, H.B., Karami, B.: On resonance behavior of porous FG curved nanobeams. Steel Compos. Struct. 36, 179–186 (2020). https://doi.org/10.12989/scs.2020.36.2.179

    Article  Google Scholar 

  40. Berghouti, H., Bedia, E.A., Benkhedda, A., Tounsi, A.: Vibration analysis of nonlocal porous nanobeams made of functionally graded material. Adv. Nano Res. 7, 351–364 (2019). https://doi.org/10.12989/anr.2019.7.5.351

    Article  Google Scholar 

  41. Gao, K., Huang, Q., Kitipornchai, S., Yang, J.: Nonlinear dynamic buckling of functionally graded porous beams. Mech. Adv. Mater. Struct. 28, 1–12 (2019). https://doi.org/10.1080/15376494.2019.1567888

    Article  Google Scholar 

  42. Chen, D., Kitipornchai, S., Yang, J.: Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin-Walled Struct. 107, 39–48 (2016). https://doi.org/10.1016/j.tws.2016.05.025

    Article  Google Scholar 

  43. Li, L., Tang, H., Hu, Y.: Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature. Compos. Struct. 184, 1177–1188 (2018). https://doi.org/10.1016/j.compstruct.2017.10.052

    Article  Google Scholar 

  44. Yapor Genao, F., Kim, J., Zur, K.: Nonlinear finite element analysis of temperature-dependent functionally graded porous micro-plates under thermal and mechanical loads. Compos. Struct. 256, 112931 (2021). https://doi.org/10.1016/j.compstruct.2020.112931

    Article  Google Scholar 

  45. Zeng, S., Wang, B.L., Wang, K.F.: Nonlinear vibration of piezoelectric sandwich nanoplates with functionally graded porous core with consideration of flexoelectric effect. Compos. Struct. 207, 340–351 (2019). https://doi.org/10.1016/j.compstruct.2018.09.040

    Article  Google Scholar 

  46. Jena, S.K., Chakraverty, S., Malikan, M.: Stability analysis of nanobeams in hygrothermal environment based on a nonlocal strain gradient Timoshenko beam model under nonlinear thermal field. J. Comput. Des. Eng. 7, 685–699 (2020). https://doi.org/10.1093/jcde/qwaa051

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendran Selvamani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvamani, R., Rexy, J.B. & Ebrahimi, F. Finite element modeling and analysis of piezoelectric nanoporous metal foam nanobeam under hygro and nonlinear thermal field. Acta Mech 233, 3113–3132 (2022). https://doi.org/10.1007/s00707-022-03263-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03263-x

Navigation