Skip to main content
Log in

Size-dependent vibration and bending analyses of the piezomagnetic three-layer nanobeams

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Vibration and electro-magneto-elastic bending analysis of a three-layer nanobeam with a nanocore and two piezomagnetic face sheets are studied in this paper. Timoshenko model of beam as well as nonlocal magneto-electro-elastic relations are used for analysis of this problem. The nanoface sheets are subjected to applied electric and magnetic potentials. The nanobeam rests on Winkler–Pasternak foundation. Electric and magnetic potentials are assumed as combination of linear function along the thickness direction that reflects applied electric and magnetic potentials and a cosine function that satisfies boundary conditions. Numerical results of this problem investigate the effect of some important parameters of nanobeam, such as nonlocal parameter, applied electric and magnetic potentials, and parameters of foundation on the vibration and magneto-electro-mechanical bending behaviors of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

\({{u}},{{w}}\) :

Displacement of mid-surface

\(\theta\) :

Rotation component

\(\mu ,\lambda\) :

Lamé’s constants

\(\xi\) :

Nonlocal parameter

\({{\nabla }^{2}}\) :

Laplacian operator

\(\psi ,\phi\) :

Electric and magnetic potentials

\({{\sigma }_{xx}},{{\tau }_{xz}}\) :

Stress components

\({{\varepsilon }_{xx}},{{\gamma }_{xz}}\) :

Strain components

\({{C}_{ijkl}}\) :

Stiffness coefficients

\({{e}_{ijk}}\) :

Piezoelectric constants

\({{q}_{ijk}}\) :

Piezomagnetic coefficients

\({{E}_{k}}\) :

Electric field

\({{H}_{k}}\) :

Magnetic field

\({{N}_{ij}},{{M}_{ij}}\) :

Force and moment resultants

\({{\bar{D}}_{i}},{{\bar{B}}_{i}}\) :

Electric displacement and magnetic induction resultants

T:

Kinetic energy

U:

Strain energy

\({{k}_{1}},{{k}_{2}}\) :

Parameters of Pasternak’s foundation

W:

External works

\(K,J,P\) :

Stiffness, damping, and mass matrices

F :

Force matrix

L :

Length of beam

\(\omega\) :

Natural frequencies

q :

Transverse loads

\(U,\Theta ,W,\Psi ,\Phi\) :

Amplitude of unknown functions

\({{\psi }_{0}},{{\phi }_{0}}\) :

Applied electric and magnetic potentials

References

  1. C.A. Eringen, J. Appl. Phys. 54, 4703 (1983)

    Article  ADS  Google Scholar 

  2. J. Yoon, C.Q. Ru, A. Mioduchowski, Compos. Part B Eng. 35, 87 (2004)

    Article  Google Scholar 

  3. C.M. Wang, Y.Y. Zhang, S.S. Ramesh, S. Kitipornchai, J. Phys. D Appl. Phys. 39, 17 (2006)

    Google Scholar 

  4. Q. Wang, G.Y. Zhou, K.C. Lin, Int. J. Solids Struct. 43, 6071–6084 (2006)

    Article  Google Scholar 

  5. M. H. Hsu, Commun. Numer. Meth. Eng., 24(11), 1445–1457 (2008)

    Article  Google Scholar 

  6. H.M. Ma, X.L. Gao, J.N. Reddy, J. Mech. Phys. Solids 56, 3379–3391 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Arefi, G.H. Rahimi, M.J. Khoshgoftar, Int. J. Phys. Sci. 6(27), 6315–6322 (2011)

    Google Scholar 

  8. M. Arefi, M.J. Khoshgoftar, Smart. Struct. Sys. 14(2), 225–246 (2014)

    Article  Google Scholar 

  9. T. Murmu, S.C. Pradhan, Phys. E 41, 1232–1239 (2009)

    Article  Google Scholar 

  10. M. Asghari, M.H. Kahrobaiyan, M.T. Ahmadian, Int. J. Eng. Sci. 48, 1749–1761 (2010)

    Article  Google Scholar 

  11. J. Yang, L.L. Ke, S. Kitipornchai, Phys. E 42, 1727–1735 (2010)

    Article  Google Scholar 

  12. S.C. Pradhan, A. Kumar, Comput. Mater. Sci. 50, 239–245 (2010)

    Article  Google Scholar 

  13. L. Yin, Q. Qian, L. Wang, W. Xi, Acta. Mech. Solida. Sin. 23(5), 386–393 (2010)

    Article  Google Scholar 

  14. B. Akgöz, Ö. Civalek, Int. J. Eng. Sci. 49, 1268–1280 (2011)

    Article  Google Scholar 

  15. S.C. Pradhan, A. Kumar, Compos. Struct. 93, 774–779 (2011)

    Article  Google Scholar 

  16. A. Alibeigloo, Acta. Mech. 222, 149–159 (2011)

    Article  Google Scholar 

  17. E. Jomehzadeh, H.R. Noori, A.R. Saidi, Phys. E 43, 877–883 (2011)

    Article  Google Scholar 

  18. E. Jomehzadeh, A.R. Saidi, Compos. Struct. 93, 1015–1020 (2011)

    Article  Google Scholar 

  19. S. Narendar, Compos. Struct. 93, 3093–3103 (2011)

    Article  Google Scholar 

  20. M. Asghari, M. Rahaeifard, M.H. Kahrobaiyan, M.T. Ahmadian, Mater. Design 32, 1435–1443 (2011)

    Article  Google Scholar 

  21. B. Mohammadi, S.A.M. Ghannadpour, Proc. Eng. 10, 1766–1771 (2011)

    Article  Google Scholar 

  22. R. Ansari, R. Gholami, S. Sahmani, Compos. Struct. 94, 221–228 (2011)

    Article  Google Scholar 

  23. Z. Yan, M. Zaman, L. Jiang, Mater. 4(12), 2151–2170 (2011)

    Article  Google Scholar 

  24. M.H. Kargarnovin, R. Hashemi, A.A. Emami, Mech. Adv. Mater. Struct. 20(1), 11–27 (2013)

    Article  Google Scholar 

  25. A. Ghorbanpour Arani, R. Kolahchi, S.A. Mortazavi, Int. J. Mech. Mater. Design 10, 179–191 (2014)

    Article  Google Scholar 

  26. M.A. Eltaher, A.A. Abdelrahman, A. Al-Nabawy, M. Khater, A. Mansour, Appl. Math. Comput. 235, 512–529 (2014)

    MathSciNet  Google Scholar 

  27. A. Akbarzadeh, Z. Chen, Mech. Adv. Mater. Struct. 21(1), 67–80 (2014)

    Article  Google Scholar 

  28. A. Li, S. Zhou, L. Qi, Appl. Phys. A 122, 918 (2016)

    Article  ADS  Google Scholar 

  29. F. Ebrahimi, M.R. Barati, A. Dabbagh, Appl. Phys. A 122, 949 (2016)

    Article  ADS  Google Scholar 

  30. A.A. Jandaghian, O. Rahmani, Smart. Mater. Struct. 25, 035023 (2016)

    Article  ADS  Google Scholar 

  31. M. Arefi. Latin Am. J. Solids. Struct. 11(11), 2073–2098 (2014)

    Article  Google Scholar 

  32. A. Farajpour, M.R. Hairi Yazdi, A. Rastgoo, M. Loghmani, M. Mohammadi, Compos. Struct. 140, 323–336 (2016)

    Article  Google Scholar 

  33. M. Arefi, A.M. Zenkour, Acta Mech. 228(2), 475–493 (2017)

    Google Scholar 

  34. M. Arefi, A.M. Zenkour, J. Sand. Struct. Mater. 18, 624–651 (2016)

    Google Scholar 

  35. M. Arefi, A.M. Zenkour, Smart. Mater. Struct. 25, 115040 (2016)

    Article  ADS  Google Scholar 

  36. M. Arefi, A.M. Zenkour, Compos. Struct. 159, 479–490 (2017)

    Article  Google Scholar 

  37. M. Arefi, A.M. Zenkour, Compos. Struct. 162, 108–122 (2017)

    Article  Google Scholar 

  38. N.J. Reddy, Int. J. Eng. Sci. 45, 288–307 (2007)

    Article  Google Scholar 

  39. J. Yang, L.L. Ke, S. Kitipornchai, Phys. E 42, 1727–1735 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The research described in this paper was financially supported by the University of Kashan. (Grant No.: 36346/5). The first author would also like to thank the Iranian Nanotechnology Development Committee for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Arefi.

Appendix 2

$$\left\{ {{A}_{1}},{{A}_{2}},{{A}_{8}} \right\}=\underset{-\frac{h}{2}-{{h}_{p}}}{\overset{-\frac{h}{2}}{\mathop \int }}\,{{c}_{11}}\left\{ 1,{{x}_{3}},x_{3}^{2} \right\}\text{d}{{x}_{3}}+\underset{-\frac{h}{2}}{\overset{\frac{h}{2}}{\mathop \int }}\,E\left\{ 1,{{x}_{3}},x_{3}^{2} \right\}\text{d}{{x}_{3}}+\underset{\frac{h}{2}}{\overset{\frac{h}{2}+{{h}_{p}}}{\mathop \int }}\,{{c}_{11}}\left\{ 1,{{x}_{3}},x_{3}^{2} \right\}\text{d}{{x}_{3}},$$
$$\left\{ {{A}_{3}},{{A}_{9}} \right\}=\underset{-\frac{h}{2}-{{h}_{p}}}{\overset{-\frac{h}{2}}{\mathop \int }}\,{{e}_{113}}\frac{\pi }{{{h}_{p}}}\sin \left( \frac{\pi {{{\tilde{x}}}_{3}}}{{{h}_{p}}} \right)\left\{ 1,{{x}_{3}} \right\}\text{d}{{x}_{3}}+\underset{\frac{h}{2}}{\overset{\frac{h}{2}+{{h}_{p}}}{\mathop \int }}\,{{e}_{113}}\frac{\pi }{{{h}_{p}}}\sin \left( \frac{\pi {{{\tilde{x}}}_{3}}}{{{h}_{p}}} \right)\left\{ 1,{{x}_{3}} \right\}\text{d}{{x}_{3}},$$
$$\left\{ {{A}_{4}},{{A}_{10}} \right\}=\underset{-\frac{h}{2}-{{h}_{p}}}{\overset{-\frac{h}{2}}{\mathop \int }}\,{{q}_{113}}\frac{\pi }{{{h}_{p}}}\sin \left( \frac{\pi {{{\tilde{x}}}_{3}}}{{{h}_{p}}} \right)\left\{ 1,{{x}_{3}} \right\}\text{d}{{x}_{3}}+\underset{\frac{h}{2}}{\overset{\frac{h}{2}+{{h}_{p}}}{\mathop \int }}\,{{q}_{113}}\frac{\pi }{{{h}_{p}}}\sin \left( \frac{\pi {{{\tilde{x}}}_{3}}}{{{h}_{p}}} \right)\left\{ 1,{{x}_{3}} \right\}\text{d}{{x}_{3}},$$
$${{A}_{5}}=\underset{-\frac{h}{2}-{{h}_{p}}}{\overset{-\frac{h}{2}}{\mathop \int }}\,{{c}_{12}}\text{d}{{x}_{3}}+\underset{-\frac{h}{2}}{\overset{\frac{h}{2}}{\mathop \int }}\,\mu \text{d}{{x}_{3}}+\underset{\frac{h}{2}}{\overset{\frac{h}{2}+{{h}_{p}}}{\mathop \int }}\,{{c}_{12}}\text{d}{{x}_{3}},$$
$$\left\{ {{A}_{6}},{{A}_{7}} \right\}=\underset{-\frac{h}{2}-{{h}_{p}}}{\overset{-\frac{h}{2}}{\mathop \int }}\,\left\{ {{e}_{113}},{{q}_{113}} \right\}\cos \left( \frac{\pi {{{\tilde{x}}}_{3}}}{{{h}_{p}}} \right)\text{d}{{x}_{3}}+\underset{\frac{h}{2}}{\overset{\frac{h}{2}+{{h}_{p}}}{\mathop \int }}\,\left\{ {{e}_{113}},{{q}_{113}} \right\}\cos \left( \frac{\pi {{{\tilde{x}}}_{3}}}{{{h}_{p}}} \right)\text{d}{{x}_{3}},$$
$$\left\{ {{A}_{11}},{{A}_{12}},{{A}_{13}} \right\}=\underset{-\frac{h}{2}-{{h}_{p}}}{\overset{-\frac{h}{2}}{\mathop \int }}\,\left\{ {{\eta }_{11}},{{g}_{11}},{{\mu }_{11}} \right\}{{\cos }^{2}}\left( \frac{\pi {{{\tilde{x}}}_{3}}}{{{h}_{p}}} \right)\text{d}{{x}_{3}}+\underset{\frac{h}{2}}{\overset{\frac{h}{2}+{{h}_{p}}}{\mathop \int }}\,\left\{ {{\eta }_{11}},{{g}_{11}},{{\mu }_{11}} \right\}\cos \left( \frac{\pi {{{\tilde{x}}}_{3}}}{{{h}_{p}}} \right)\text{d}{{x}_{3}},$$
$$\left\{ {{A}_{14}},{{A}_{15}},{{A}_{16}} \right\}=\underset{-\frac{h}{2}-{{h}_{p}}}{\overset{-\frac{h}{2}}{\mathop \int }}\,\left\{ {{\eta }_{33}},{{g}_{33}},{{\mu }_{33}} \right\}{{\left[ \frac{\pi }{{{h}_{p}}}\sin \left( \frac{\pi {{{\tilde{x}}}_{3}}}{{{h}_{p}}} \right) \right]}^{2}}\text{d}{{x}_{3}}+\underset{\frac{h}{2}}{\overset{\frac{h}{2}+{{h}_{p}}}{\mathop \int }}\,\left\{ {{\eta }_{33}},{{g}_{33}},{{\mu }_{33}} \right\}{{\left[ \frac{\pi }{{{h}_{p}}}\sin \left( \frac{\pi {{{\tilde{x}}}_{3}}}{{{h}_{p}}} \right) \right]}^{2}}\text{d}{{x}_{3}},$$
$$\left\{ {{N}^{\psi }},{{M}^{\psi }} \right\}=\underset{-\frac{h}{2}-{{h}_{p}}}{\overset{-\frac{h}{2}}{\mathop \int }}\,{{e}_{113}}\frac{2{{\psi }_{0}}}{{{h}_{p}}}\left\{ 1,{{x}_{3}} \right\}\text{d}{{x}_{3}}+\underset{\frac{h}{2}}{\overset{\frac{h}{2}+{{h}_{p}}}{\mathop \int }}\,{{e}_{113}}\frac{2{{\psi }_{0}}}{{{h}_{p}}}\left\{ 1,{{x}_{3}} \right\}\text{d}{{x}_{3}},$$
$$\left\{ {{N}^{\phi }},{{M}^{\phi }} \right\}=\underset{-\frac{h}{2}-{{h}_{p}}}{\overset{-\frac{h}{2}}{\mathop \int }}\,{{q}_{113}}\frac{2{{\phi }_{0}}}{{{h}_{p}}}\left\{ 1,{{x}_{3}} \right\}\text{d}{{x}_{3}}+\underset{\frac{h}{2}}{\overset{\frac{h}{2}+{{h}_{p}}}{\mathop \int }}\,{{q}_{113}}\frac{2{{\phi }_{0}}}{{{h}_{p}}}\left\{ 1,{{x}_{3}} \right\}\text{d}{{x}_{3}},$$
$$\left\{ {{{\bar{D}}}^{\psi }},{{{\bar{B}}}^{\psi }} \right\}=\underset{-\frac{h}{2}-{{h}_{p}}}{\overset{-\frac{h}{2}}{\mathop \int }}\,\left\{ {{\eta }_{33}},{{g}_{33}} \right\}\frac{2{{\psi }_{0}}}{{{h}_{p}}}\frac{\pi }{{{h}_{p}}}\sin \left( \frac{\pi {{{\tilde{x}}}_{3}}}{{{h}_{p}}} \right)\text{d}{{x}_{3}}+\underset{\frac{h}{2}}{\overset{\frac{h}{2}+{{h}_{p}}}{\mathop \int }}\,\left\{ {{\eta }_{33}},{{g}_{33}} \right\}\frac{2{{\psi }_{0}}}{{{h}_{p}}}\frac{\pi }{{{h}_{p}}}\sin \left( \frac{\pi {{{\tilde{x}}}_{3}}}{{{h}_{p}}} \right)\text{d}{{x}_{3}},$$
$$\left\{ {{{\bar{D}}}^{\phi }},{{{\bar{B}}}^{\phi }} \right\}=\underset{-\frac{h}{2}-{{h}_{p}}}{\overset{-\frac{h}{2}}{\mathop \int }}\,\left\{ {{g}_{33}},{{\mu }_{33}} \right\}\frac{2{{\phi }_{0}}}{{{h}_{p}}}\frac{\pi }{{{h}_{p}}}\sin \left( \frac{\pi {{{\tilde{x}}}_{3}}}{{{h}_{p}}} \right)\text{d}{{x}_{3}}+\underset{\frac{h}{2}}{\overset{\frac{h}{2}+{{h}_{p}}}{\mathop \int }}\,\left\{ {{g}_{33}},{{\mu }_{33}} \right\}\frac{2{{\phi }_{0}}}{{{h}_{p}}}\frac{\pi }{{{h}_{p}}}\sin \left( \frac{\pi {{{\tilde{x}}}_{3}}}{{{h}_{p}}} \right)\text{d}{{x}_{3}}.$$

Appendix 1

Appendix 1

$$\left\{ A,B,C \right\}=\underset{-\frac{h}{2}-{{h}_{p}}}{\overset{-\frac{h}{2}}{\mathop \int }}\,{{\rho }^{p}}\left\{ 1,{{x}_{3}},x_{3}^{2} \right\}\text{d}{{x}_{3}}+\underset{-\frac{h}{2}}{\overset{\frac{h}{2}}{\mathop \int }}\,{{\rho }^{c}}\left\{ 1,{{x}_{3}},x_{3}^{2} \right\}\text{d}{{x}_{3}}+\underset{\frac{h}{2}}{\overset{\frac{h}{2}+{{h}_{p}}}{\mathop \int }}\,{{\rho }^{p}}\left\{ 1,{{x}_{3}},x_{3}^{2} \right\}\text{d}{{x}_{3}}.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arefi, M., Zenkour, A.M. Size-dependent vibration and bending analyses of the piezomagnetic three-layer nanobeams. Appl. Phys. A 123, 202 (2017). https://doi.org/10.1007/s00339-017-0801-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0801-0

Keywords

Navigation