Skip to main content
Log in

Dynamic stability analysis of Mindlin viscoelastic plates subjected to constant and harmonic in-plane compressions based on free vibration analysis of elastic plates

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, a dynamic stability analysis of moderately thick viscoelastic plates is performed employing the Boltzmann integral law with constant bulk modulus. The remarkable and new point of the proposed method is that the frequency of a Mindlin viscoelastic plate subjected to simultaneous constant and harmonic in-plane compressive loads is explicitly predictable based on free vibration analysis of an elastic plate. Moreover, the damped part of frequency is easily calculated. Also, the critical excitation for which the system becomes unstable is determined. This method is completely new and significantly reduces the computational cost. The obtained results are compared with other existing results to show the efficiency and accuracy of the proposed method. This method is used to investigate the effects of viscoelastic properties and in-plane compressions on the steady-state responses of Mindlin viscoelastic plates under time-dependent compressive loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dost, S., Glockner, P.G.: On the dynamic stability of viscoelastic perfect column. Int. J. Solids Struct. 18(7), 587–596 (1982)

    Article  Google Scholar 

  2. Szyszkowski, W., Glockner, P.G.: The stability of viscoelastic perfect column: a dynamic approach. Int. J. Solids Struct. 21(6), 545–559 (1985)

    Article  Google Scholar 

  3. Li, G., Zhu, Z., Cheng, C.: Dynamic stability of viscoelastic column with fractional derivative constitutive relation. Appl. Math. Mech. 22(3), 294–310 (2001)

    Article  Google Scholar 

  4. Leung, A.Y.T., Yang, H.X., Chen, J.Y.: Parametric bifurcation of a viscoelastic column subject to axial harmonic force and time delayed control. Comput. Struct. 136, 47–55 (2014)

    Article  Google Scholar 

  5. Aboudi, J., Cederbaum, G.: Dynamic stability of viscoelastic plates by Lyapunov exponents. J. Sound Vib. 139(3), 459–467 (1990)

    Article  Google Scholar 

  6. Teifouet, A.R.M.: Nonlinear vibration of 2D viscoelastic plate subjected to tangential follower force. Eng. Mech. 20(1), 59–74 (2013)

    Google Scholar 

  7. Amabili, M.: Nonlinear vibration of viscoelastic rectangular plates. J. Sound Vib. 362, 142–156 (2016)

    Article  Google Scholar 

  8. Balasubramanian, P., Ferrari, G., Amabili, M.: Identification of the viscoelastic response and nonlinear damping of a rubber plate in nonlinear vibration regime. Mech. Syst. Signal Process. 111, 376–398 (2018)

    Article  Google Scholar 

  9. Amabili, M.: Nonlinear damping in nonlinear vibrations of rectangular plates: derivation from viscoelasticity and experimental validation. J. Mech. Phys. Solids 118, 275–292 (2018)

    Article  MathSciNet  Google Scholar 

  10. Zhou, Y.F., Wang, Z.M.: Dynamic instability of axially moving viscoelastic plate. Eur. J. Mech. A. Solids. 73, 1–10 (2019)

    Article  MathSciNet  Google Scholar 

  11. Amabili, M., Balasubramanian, P., Ferrari, G.: Nonlinear vibrations and damping of fractional viscoelastic rectangular plates. Nonlinear Dyn. 103, 3581–3609 (2021)

    Article  Google Scholar 

  12. Singha, M.K., Daripa, R.: Nonlinear vibration and dynamic stability analysis of composite plates. J. Sound Vib. 328, 541–554 (2009)

    Article  Google Scholar 

  13. Zamani, H.A., Aghdam, M.M., Sadighi, M.: Free vibration analysis of thick viscoelastic composite plates on visco-Pasternak foundation using higher-order theory. Compos. Struct. 182, 25–35 (2017)

    Article  Google Scholar 

  14. Jafari, N., Azhari, M., Boroomand, B.: Geometrically nonlinear analysis of time-dependent composite plates using time function optimization. Int. J. Non Linear Mech. 116, 219–229 (2019)

    Article  Google Scholar 

  15. Arshid, E., Amir, S., Loghman, A.: Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT. Int. J. Mech. Sci. 180, 105656 (2020)

    Article  Google Scholar 

  16. Amir, S., Arshid, E., Khoddami Maraghi, Z.: Free vibration analysis of magneto-rheological smart annular three-layered plates subjected to magnetic field in viscoelastic medium. Smart Struct. Syst. 25, 581–592 (2020)

    Google Scholar 

  17. Amir, S., Arshid, E., Rasti-Alhosseini, S.M.A., Loghman, A.: Quasi-3D tangential shear deformation theory for size-dependent free vibration analysis of three-layered FG porous micro rectangular plate integrated by nano-composite faces in hygrothermal environment. J. Therm. Stresses 43(2), 133–156 (2020)

    Article  Google Scholar 

  18. Jafari, N., Azhari, M.: Free vibration analysis of viscoelastic plates with simultaneous calculation of natural frequency and viscous damping. Math. Comput. Simul. 185, 646–659 (2021)

    Article  MathSciNet  Google Scholar 

  19. Khorasani, M., Soleimani-Javid, Z., Arshid, E., Amir, S., Civalek, Ö.: Vibration analysis of graphene nanoplatelets’ reinforced composite plates integrated by piezo-electromagnetic patches on the piezo-electromagnetic media. In: Waves in Random and Complex Media. https://doi.org/10.1080/17455030.2021.1956017

  20. Ilyasov, M.H., Akoz, A.Y.: The vibration and dynamic stability of viscoelastic plates. Int. J. Eng. Sci. 38, 695–714 (2000)

    Article  Google Scholar 

  21. Eshmatov, BKh.: Dynamic stability of viscoelastic plates under increasing compressing loads. J. Appl. Mech. Tech. Phys. 47(2), 289–297 (2006)

    Article  Google Scholar 

  22. Eshmatov, BKh.: Nonlinear vibration and dynamic stability of viscoelastic orthotropic rectangular plates. J. Sound Vib. 300, 709–726 (2007)

    Article  Google Scholar 

  23. Sofiyev, A.H., Zerin, Z., Kuruoglu, N.: Dynamic behavior of FGM viscoelastic plates resting on elastic foundations. Acta Mech. 231, 1–17 (2020)

    Article  MathSciNet  Google Scholar 

  24. Zhang, N.H., Cheng, C.J.: Nonlinear mathematical model of viscoelastic thin plates with its applications. Comput. Methods Appl. Mech. Eng. 16(5), 307–319 (1998)

    MATH  Google Scholar 

  25. Jafari, N., Azhari, M.: Stability analysis of arbitrarily shaped moderately thick viscoelastic plates using Laplace–Carson transformation and a simple hp cloud method. Mech. Time Depend. Mater. 21(3), 365–381 (2017)

    Article  Google Scholar 

  26. Touati, D., Cederbaum, G.: Dynamic stability of nonlinear viscoelastic plates. Int. J. Solids Struct. 31(17), 2367–2376 (1994)

    Article  Google Scholar 

  27. Jafari, N., Azhari, M.: Geometrically Nonlinear Analysis of Thick Orthotropic Plates with Various Geometries Using Simple Hp-Cloud Method. Eng. Comput. 33(5), 1451–1471 (2016)

    Article  Google Scholar 

  28. Civalek, Ö.: Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method. Int. J. Mech. Sci. 49, 752–765 (2007)

    Article  Google Scholar 

  29. Jafari, N., Azhari, M., Heidarpour, A.: Local buckling of rectangular viscoelastic composite plates using finite strip method. Mech. Adv. Mater. Struct. 21, 263–272 (2014)

    Article  Google Scholar 

  30. Amabili, M.: Nonlinear Mechanics of Shells and Plates: Composite, Soft and Biological Materials. Cambridge University Press, Cambridge (2018)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Bijan Boroomand, for his contributions in studying the manuscript, and his valuable comments and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasrin Jafari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Dynamic stability analysis of a simply supported viscoelastic column

Appendix: Dynamic stability analysis of a simply supported viscoelastic column

The equation of a viscoelastic column subjected to a time-dependent compressive load \(p\left( t \right)\), as illustrated in Fig. 10, is defined as [2]:

$$\frac{{\partial^{2} M}}{{\partial x^{2} }} - p\left( t \right)\frac{{\partial^{2} w}}{{\partial x^{2} }} = m\frac{{\partial^{2} w}}{{\partial t^{2} }}$$
(80)

in which \(x\) is the longitudinal axis, \(w\) is the transverse displacement, and \(m\) denotes the mass per unit length.

The bending moment \(M\) can be expressed as:

$$M = \mathop \int \limits_{A}^{{}} \sigma \left( {x,y,t} \right)y{\text{d}}A$$
(81)

where \(y\) is the transverse axis.

Fig. 10
figure 10

A viscoelastic column subjected to time-dependent axial compressive load

The constitutive equation of a linear viscoelastic material based on the Boltzmann integral can be given as [24]:

$$\sigma \left( {x,y,t} \right) = E\left( t \right)\varepsilon \left( 0 \right) + \mathop \int \limits_{0}^{t} E\left( {t - \tau } \right)\dot{\varepsilon }\left( \tau \right){\text{d}}\tau$$
(82)

where \(E\left( t \right)\) is the relaxation function. It is noted that in case of steady harmonic vibrations employing Eq. (82) is not necessary, and the problem reduces to the study of the storage and loss modulus [30]. But, since the goal of this paper is to study the dynamic stability of columns subjected to axial compression, using Eq. (83) is necessary.

For a Bernoulli beam, the relation between the strain \(\varepsilon\) and the deflection \(w\) can be written as [2]:

$$\varepsilon \left( {x,y,t} \right) = - y\frac{{\partial^{2} w\left( {x,t} \right)}}{{\partial x^{2} }}.$$
(83)

Considering simply supported boundary conditions and by supposing that all points of the column move in phase, the deflection may be represented by [1, 4]:

$$w\left( {x,t} \right) = F\left( t \right){\text{ sin}}\frac{\pi x}{l}.$$
(84)

The relaxation function can be defined as follows:

$$E\left( t \right) = E_{0} \eta \left( t \right), \eta \left( t \right) = c_{1} + c_{2} {\text{e}}^{ - \lambda t}$$
(85)

where \(E_{0}\) is the elasticity modulus at time zero.

Substituting Eqs. (8285) into Eq. (80), Eq. (86) is obtained:

$$E\left( t \right)\frac{{I\pi^{4} }}{{l^{4} }}F\left( 0 \right) + E_{0} \frac{{I\pi^{4} }}{{l^{4} }}\mathop \int \limits_{0}^{t} \eta \left( {t - \tau } \right)\dot{F}\left( \tau \right){\text{d}}\tau - \frac{{\pi^{2} }}{{l^{2} }}p\left( t \right)F\left( t \right) + m\ddot{F}\left( t \right) = 0$$
(86)

in which \(I\) is the column moment of inertia.

The time-dependent compressive load, \(p\left( t \right)\), may be given as:

$$p\left( t \right) = \left( {\alpha_{1} + \beta_{1} \cos \varphi t} \right)P_{{\text{e}}} , P_{{\text{e}}} = \frac{{\pi^{2} E_{0} I }}{{l^{2} }}, 0 \le \alpha_{1} < 1, \beta_{1} \ge 0, 0 < \varphi < \pi /2$$
(87)

in which \(\alpha_{1}\) and \(\beta_{1}\) are constant, and \(\varphi\) is the excitation frequency. Replacing Eq. (87) in Eq. (85), Eq. (88) is obtained:

$$\eta \left( t \right)F\left( 0 \right) + \mathop \int \limits_{0}^{t} \eta \left( {t - \tau } \right)\dot{F}\left( \tau \right){\text{d}}\tau - \alpha_{1} F\left( t \right) - \beta_{1} \cos \varphi tF\left( t \right) + \frac{{\ddot{F}\left( t \right)}}{{\Omega^{2} }} = 0$$
(88)

where the fundamental natural frequency at time zero is defined as follows:

$${\Omega }^{2} = \frac{{E_{0} I\pi^{4} }}{{ml^{4} }}.$$
(89)

For a viscoelastic column, the time function can be defined as:

$$F\left( t \right) = {\text{e}}^{{s_{0} t}}.$$
(90)

So, one can write Eq. (91) as follows:

$$\dot{F}\left( t \right) = s_{0} F\left( t \right), \ddot{F}\left( t \right) = s_{0}^{2} F\left( t \right).$$
(91)

Replacing Eq. (91) in Eq. (88), Eq. (92) is obtained:

$$\eta \left( t \right) + s_{0} \mathop \int \limits_{0}^{t} \eta \left( {t - \tau } \right)F\left( \tau \right){\text{d}}\tau - \alpha_{1} F\left( t \right) - \beta_{1} \cos \varphi tF\left( t \right) + \left( {\frac{{s_{0} }}{\Omega }} \right)^{2} F\left( t \right) = 0.$$
(92)

If Laplace transform is taken from Eq. (92), Eq. (93) is obtained:

$$\eta^{*} + s_{0} \mathop \int \limits_{0}^{\infty } \mathop \int \limits_{0}^{t} \eta \left( {t - \tau } \right)F\left( \tau \right){\text{d}}\tau {\text{e}}^{{ - {\text{st}}}} {\text{d}}t - \alpha_{1} F^{*} - \beta_{1} \left( {\cos \varphi tF\left( t \right)} \right)^{*} + \frac{{\ddot{F}^{*} }}{{\Omega^{2} }} = 0$$
(93)

in which \(\eta^{*}\), \(F^{*}\), \(\ddot{F}^{*},\) and \(\left( {\cos \varphi tF\left( t \right)} \right)^{*}\) are the Laplace transformations of \(\eta \left( t \right)\), \(F\left( t \right)\), \(\ddot{F}\left( t \right)\), and \(\cos \varphi tF\left( t \right)\), respectively.

According to Laplace transform properties, the second term of Eq. (93) can be calculated as:

$$s_{0} \mathop \int \limits_{0}^{\infty } \mathop \int \limits_{0}^{t} \eta \left( {t - \tau } \right)F\left( \tau \right){\text{d}}\tau {\text{e}}^{{ - {\text{st}}}} {\text{d}}t = s_{0} \mathop \int \limits_{0}^{\infty } \mathop \int \limits_{0}^{t} \eta \left( \tau \right)F\left( {t - \tau } \right){\text{d}}\tau {\text{e}}^{{ - {\text{st}}}} {\text{d}}t = s_{0} \mathop \int \limits_{0}^{\infty } \mathop \int \limits_{0}^{t} \eta \left( \tau \right){\text{e}}^{{s_{0} \left( {t - \tau } \right)}} {\text{d}}\tau {\text{e}}^{{ - {\text{st}}}} {\text{d}}t = s_{0} \mathop \int \limits_{0}^{\infty } \left( {\mathop \int \limits_{0}^{t} \eta \left( \tau \right){\text{e}}^{{ - s_{0} \tau }} {\text{d}}\tau } \right){\text{e}}^{{ - {\text{st}} + s_{0} t}} {\text{d}}t.$$
(94)

On the other hand, the convolution integral of Eq. (94) can be calculated as:

$$s_{0} \mathop \int \limits_{0}^{\infty } \left( {\mathop \int \limits_{0}^{t} \eta \left( \tau \right){\text{e}}^{{ - s_{0} \tau }} {\text{d}}\tau } \right){\text{e}}^{{ - {\text{st}} + s_{0} t}} {\text{d}}t = s_{0} \mathop \int \limits_{0}^{\infty } \eta \left( \tau \right){\text{e}}^{{ - s_{0} \tau }} {\text{d}}\tau \mathop \int \limits_{0}^{\infty } e^{{s_{0} t}} {\text{e}}^{{ - {\text{st}}}} {\text{d}}t = s_{0} \eta_{{s_{0} }}^{*} F^{*} ,$$
$$\eta_{{s_{0} }}^{*} = \left( {\frac{{c_{1} }}{{s_{0} }} + \frac{{c_{2} }}{{s_{0} + \lambda }}} \right), F^{*} = \mathop \int \limits_{0}^{\infty } {\text{e}}^{{s_{0} t}} {\text{e}}^{{ - {\text{st}}}} {\text{d}}t = \frac{1}{{s - s_{0} }}.$$
(95)

Using Eqs. (90) and (95), Eq. (93) can be simplified as:

$$\eta^{*} + s_{0} \eta_{{s_{0} }}^{*} F^{*} - \alpha_{1} F^{*} + \left( {\frac{{s_{0} }}{\Omega }} \right)^{2} F^{*} - \beta_{1} \left( {\cos \varphi tF\left( t \right)} \right)^{*} = 0.$$
(96)

Alternatively:

$$\eta^{*} + \left( {s_{0} \eta_{{s_{0} }}^{*} - \alpha_{1} + \left( {\frac{{s_{0} }}{\Omega }} \right)^{2} } \right)\frac{1}{{s - s_{0} }} - \frac{{\beta_{1} }}{2}\left( {\frac{1}{{s - s_{0} + i\varphi }} + \frac{1}{{s - s_{0} - i\varphi }}} \right) = 0.$$
(97)

If Eq. (92) is solved in the time domain too, Eq. (98) is derived:

$$\left( {s_{0} \left( {\frac{{c_{1} }}{{s_{0} }} + \frac{{c_{2} }}{{s_{0} + \lambda }}} \right) - \alpha_{1} + \left( {\frac{{s_{0} }}{{\Omega }}} \right)^{2} } \right)\frac{1}{{i\varphi + \alpha_{0} }} - \beta_{1} \frac{{i\varphi + \alpha_{0} }}{{2i\varphi \alpha_{0} + \alpha_{0}^{2} }} = 0.$$
(98)

Comparing Eq. (97) and Eq. (98), the Laplace parameter in Eq. (97) can be replaced by \(i\left( {\omega_{0} + \varphi } \right){ },\) that is, \(s = i\left( {\omega_{0} + \varphi } \right)\).

Replacing \(s = i\left( {\omega_{0} + \varphi } \right)\) and ignoring \(\eta^{*} = \frac{{c_{1} }}{{i\left( {\omega_{0} + \varphi } \right)}} + \frac{{c_{2} }}{{i\left( {\omega_{0} + \varphi } \right) + \lambda }}\), Eq. (97) can be rewritten as follows:

$$s_{0} \eta_{{s_{0} }}^{*} - \alpha_{1} + \left( {\frac{{s_{0} }}{{\Omega }}} \right)^{2} - \beta_{1} \frac{{\left( {i\varphi + \alpha_{0} } \right)^{2} }}{{2i\varphi \alpha_{0} + \alpha_{0}^{2} }} = 0, s_{0} \eta_{{s_{0} }}^{*} = c_{1} + \frac{{c_{2} s_{0} }}{{s_{0} + \lambda }} , s_{0} = i\omega_{0} - \alpha_{0}$$
(99)

Replacing \(s_{0} = i\omega_{0} - \alpha_{0}\) in Eq. (99) and separating the real and imaginary parts, Eqs. (100) and (101) are obtained:

$$c_{1} + c_{2} \frac{{\omega_{0}^{2} + \alpha_{0}^{2} - \alpha_{0} \lambda }}{{\omega_{0}^{2} + \left( { - \alpha_{0} + \lambda } \right)^{2} }} - \alpha_{1} - \left( {\frac{{\omega_{0} }}{{\Omega }}} \right)^{2} + \left( {\frac{{\alpha_{0} }}{{\Omega }}} \right)^{2} - \beta_{1} \frac{{3\varphi^{2} \alpha_{0}^{2} + \alpha_{0}^{4} }}{{4\varphi^{2} \alpha_{0}^{2} + \alpha_{0}^{4} }} = 0,$$
(100)
$$c_{2} \frac{{\lambda \omega_{0} }}{{\omega_{0}^{2} + \left( { - \alpha_{0} + \lambda } \right)^{2} }} - 2\frac{{\omega_{0} }}{{\Omega }}\frac{{\alpha_{0} }}{{\Omega }} - \beta_{1} \frac{{2\varphi^{3} \alpha_{0} }}{{4\varphi^{2} \alpha_{0}^{2} + \alpha_{0}^{4} }} = 0.$$
(101)

Since \(\alpha_{0} \ll {\Omega },{ }\lambda \ll {\Omega }\), by ignoring \(\left( {\alpha_{0/} {\Omega }} \right)^{2}\), \(\left( {\lambda /{\Omega }} \right)^{2}\), and \(\left( {\lambda /{\Omega }} \right)\left( {\alpha_{0/} {\Omega }} \right)\), Eqs. (102103) are derived:

$$c_{1} + c_{2} - \alpha_{1} - \left( {\frac{{\omega_{0} }}{{\Omega }}} \right)^{2} - \frac{3}{4}\beta_{1} \approx 0 or \frac{{\omega_{0} }}{{\Omega }} \approx \sqrt {1 - \alpha_{1} - \frac{3}{4}\beta_{1} }.$$
(102)

Inserting \(\omega_{0}\) in Eq. (103), \(\alpha_{0}\) is obtained:

$$c_{2} \frac{\lambda }{{\omega_{0} }} - 2\frac{{\omega_{0} }}{{\Omega }}\frac{{\alpha_{0} }}{{\Omega }} - \beta_{1} \frac{\varphi }{{2\alpha_{0} }} \approx 0{ }.$$
(103)

Alternatively:

$$\frac{{\alpha_{0} }}{{\Omega }} \approx \frac{{\frac{{c_{2} \lambda }}{{\Omega }} + \sqrt {\left( {\frac{{c_{2} \lambda }}{{\Omega }}} \right)^{2} - 4\beta_{1} \frac{\varphi }{{\Omega }}\left( {1 - \alpha_{1} - \frac{3}{4}\beta_{1} } \right)^{3/2} } }}{{4 \times \left( {1 - \alpha_{1} - \frac{3}{4}\beta_{1} } \right)}}.$$
(104)

If the free vibration is studied (\(\alpha_{1} = 0,\beta_{1} = 0\)), then \(\omega_{0} \approx {\Omega }\) and \(\alpha_{0} \approx \frac{{c_{2} \lambda }}{2}\), which is consistent with the results of Ref. [2].

Substituting Eqs. (102) and (103) into Eq. (84), Eq. (105) is derived

$$w\left( {x,t} \right) = {\text{e}}^{{\left( {i\omega_{0} - \alpha_{0} } \right)t}} {\text{sin}}\frac{\pi x}{l} = {\text{e}}^{{ - \alpha_{0} t}} \left( {\cos \omega_{0} t + i\sin \omega_{0} t} \right){\text{sin}}\frac{\pi x}{l}.$$
(105)

Considering Eq. (104), the viscoelastic column is always stable if the conditions below are satisfied:

$$1 - \alpha_{1} - \frac{3}{4}\beta_{1} > 0, \left( {\frac{{c_{2} \lambda }}{{\Omega }}} \right)^{2} \ge 4\beta_{1} \frac{\varphi }{{\Omega }}\left( {1 - \alpha_{1} - \frac{3}{4}\beta_{1} } \right)^{\frac{3}{2}} ,$$
$$0 \le \alpha_{1} < 1, \beta_{1} \ge 0, 0 < \varphi < \pi /2.$$
(106)

Finally, one can solve Eq. (107) for calculating \(\beta_{{{\text{cr}}}}\) as follows:

$$\left( {\frac{{c_{2} \lambda }}{{\Omega }}} \right)^{2} = 4\beta_{{{\text{cr}}}} \frac{\varphi }{{\Omega }}\left( {1 - \alpha_{1} - \frac{3}{4}\beta_{{{\text{cr}}}} } \right)^{3/2}.$$
(107)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, N., Azhari, M. Dynamic stability analysis of Mindlin viscoelastic plates subjected to constant and harmonic in-plane compressions based on free vibration analysis of elastic plates. Acta Mech 233, 2287–2307 (2022). https://doi.org/10.1007/s00707-022-03215-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03215-5

Navigation