Skip to main content
Log in

Variational principle and reciprocity theorem on the temperature-rate-dependent poro-thermoelasticity theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The present work is concerned with the temperature-rate-dependent theory of poro-thermoelasticity for anisotropic homogeneous medium and aims to establish the variational principle based on this theory for the fluid-saturated poro-thermoelastic medium. Here, the principle of virtual work is applied to derive the expressions for the generalized strain energy, Biot’s free energy, and the total work done by the system during the thermo-mechanical process. Further in view of this, the variational principle is established in the context of the temperature-rate-dependent poro-thermoelasticity. We also prove that a reciprocity theorem results for a general problem of poro-thermoelasticity of an anisotropic medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 28(2), 179–191 (1956)

    Article  MathSciNet  Google Scholar 

  2. Biot, M.A.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33(4), 1482–1498 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biot, M.A.: Theory of buckling of a porous slab and its thermoelastic analogy. ASME. J. Appl. Mech. 31(2), 194–198 (1964). https://doi.org/10.1115/1.3629586

    Article  MathSciNet  Google Scholar 

  4. Rice, J.R., Cleary, M.P.: Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. 14(2), 227–241 (1976)

    Article  Google Scholar 

  5. Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13(2), 125–147 (1983)

    Article  MATH  Google Scholar 

  6. Biot, M.A., Temple, G.: Theory of finite deformations of porous solids. Indiana Univ. Math. J. 21(7), 597–620 (1972)

    Article  MATH  Google Scholar 

  7. Pecker, C., Deresiewicz, H.: Thermal effects on wave propagation in liquid-filled porous media. Acta Mechanica 16(1–2), 45–64 (1973)

    Article  Google Scholar 

  8. Biot, M.A.: Variational Lagrangian-thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion. Int. J. Solids Struct. 13(6), 579–597 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Noda, N.: Thermal Stress Problem in a Fluid-Filled Porous Circular Cylinder. ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech. 70(12), 543–549 (1990)

    Article  MATH  Google Scholar 

  10. McTigue, D.F.: Thermoelastic response of fluid-saturated porous rock. J. Geophys. Res. Solid Earth 91(B9), 9533–9542 (1986)

    Article  Google Scholar 

  11. Kurashige, M.: A thermoelastic theory of fluid-filled porous materials. Int. J. Solids Struct. 25(9), 1039–1052 (1989)

    Article  Google Scholar 

  12. Li, X., Cui, L., Roegiers, J.C.: Thermoporoelastic modelling of wellbore stability in non-hydrostatic stress field. Int. J. Rock Mech. Min. Sci. 4(35), 584 (1998)

    Article  Google Scholar 

  13. Wang, H. F.: Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology, vol. 2. Princeton University Press (2000)

  14. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cattaneo, C.: A form of heat-conduction equations which eliminates the paradox of instantaneous propagation. Comptes Rendus 247, 431 (1958)

    MATH  Google Scholar 

  16. Vernotte, P.: Les paradoxes de la theorie continue de l’equation de la chaleur. Comptes Rendus 246, 3154–3155 (1958)

    MATH  Google Scholar 

  17. Vernotte, P.: Some possible complications in the phenomena of thermal conduction. Comptes Rendus 252(1), 2190–2191 (1961)

    Google Scholar 

  18. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  MATH  Google Scholar 

  19. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)

    Article  MATH  Google Scholar 

  20. Green, A.E., Laws, N.: On the entropy production inequality. Arch. Ration. Mech. Anal. 45(1), 47–53 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. Youssef, H.M.: Theory of generalized porothermoelasticity. Int. J. Rock Mech. Min. Sci. 44(2), 222–227 (2007)

    Article  Google Scholar 

  22. Sherief, H.H., Hussein, E.M.: A mathematical model for short-time filtration in poroelastic media with thermal relaxation and two temperatures. Transp. Porous Media 91(1), 199–223 (2012)

    Article  MathSciNet  Google Scholar 

  23. Sharma, M.D.: Wave propagation in anisotropic generalized thermoelastic media. J. Therm. Stress. 29(7), 629–642 (2006)

    Article  Google Scholar 

  24. Sharma, M.D.: Wave propagation in thermoelastic saturated porous medium. J. Earth Syst. Sci. 117(6), 951 (2008)

    Article  Google Scholar 

  25. Ieşan, D., Quintanilla, R.: On a theory of thermoelastic materials with a double porosity structure. J. Therm. Stress. 37(9), 1017–1036 (2014)

    Article  Google Scholar 

  26. Nunziato, J.W., Cowin, S.C.: A nonlinear theory of elastic materials with voids. Arch. Ration. Mech. Anal. 72(2), 175–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ezzat, M., Ezzat, S.: Fractional thermoelasticity applications for porous asphaltic materials. Pet. Sci. 13(3), 550–560 (2016)

    Article  Google Scholar 

  28. Van Duijn, C.J., Mikelić, A., Wheeler, M.F., Wick, T.: Thermoporoelasticity via homogenization: modeling and formal two-scale expansions. Int. J. Eng. Sci. 138, 1–25 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Marin, M., Othman, M.I., Vlase, S., Codarcea-Munteanu, L.: Thermoelasticity of initially stressed bodies with voids: a domain of influence. Symmetry 11(4), 573 (2019)

    Article  MATH  Google Scholar 

  30. Abd-Elaziz, E.M., Marin, M., Othman, M.I.: On the effect of Thomson and initial stress in a thermo-porous elastic solid under GN electromagnetic theory. Symmetry 11(3), 413 (2019)

    Article  MATH  Google Scholar 

  31. Alzahrani, F., Hobiny, A., Abbas, I., Marin, M.: An eigenvalues approach for a two-dimensional porous medium based upon weak, normal and strong thermal conductivities. Symmetry 12(5), 848 (2020)

    Article  Google Scholar 

  32. Carcione, J.M., Cavallini, F., Wang, E., Ba, J., Fu, L.Y.: Physics and simulation of wave propagation in linear thermoporoelastic media. J. Geophys. Res. Solid Earth 124(8), 8147–8166 (2019)

    Article  Google Scholar 

  33. Zampoli, V., Amendola, A.: Uniqueness, continuous dependence, and spatial behavior of the solution in linear porous thermoelasticity with two relaxation times. J. Therm. Stress. 42(12), 1582–1602 (2019)

    Article  Google Scholar 

  34. Wei, J., Fu, L.Y.: The fundamental solution of poro-thermoelastic theory. In: 2nd SEG Rock Physics Workshop: Challenges in Deep and Unconventional Oil/Gas Exploration, p. 52. Society of Exploration Geophysicists (2020)

  35. Saeed, T., Abbas, I., Marin, M.: A GL model on thermo-elastic interaction in a poroelastic material using finite element method. Symmetry 12(3), 488 (2020)

    Article  Google Scholar 

  36. Nickell, R.E., Sackman, J.L.: Approximate solutions in linear, coupled thermoelasticity. J. Appl. Mech. 35(2), 255–266 (1968)

    Article  MATH  Google Scholar 

  37. Darrall, B.T., Dargush, G.F.: Variational principle and time-space finite element method for dynamic thermoelasticity based on mixed convolved action. Eur. J. Mech. A/Solids 71, 351–364 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sherief, H.H., Dhaliwal, R.S.: A uniqueness theorem and a variational principle for generalized thermoelasticity. J. Therm. Stress. 3(2), 223–230 (1980)

    Article  Google Scholar 

  39. Dhaliwal, R.S., Sherief, H.H.: Generalized thermoelasticity for anisotropic media. Q. Appl. Math. 38(1), 1–8 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  40. He, J.H.: A generalized variational principle in micromorphic thermoelasticity. Mech. Res. Commun. 32(1), 93–98 (2005)

    Article  MATH  Google Scholar 

  41. El-Karamany, A.S., Ezzat, M.A.: Convolutional variational principle, reciprocal and uniqueness theorems in linear fractional two-temperature thermoelasticity. J. Therm. Stress. 34(3), 264–284 (2011)

    Article  Google Scholar 

  42. Shivay, O.N., Mukhopadhyay, S.: Some basic theorems on a recent model of linear thermoelasticity for a homogeneous and isotropic medium. Math. Mech. Solids 24(8), 2444–2457 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Youssef, H.M., Al-Lehaibi, E.A.: Variational principle of fractional order generalized thermoelasticity. Appl. Math. Lett. 23(10), 1183–1187 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lebon, G.: Variational principles in thermomechanics. Recent Dev. Thermomech. Solids 282, 221–415 (1980)

    Google Scholar 

  45. Hetnarski, R.B., Eslami, M.R., Gladwell, G.M.L.: Thermal Stresses: Advanced Theory and Applications, vol. 158, pp. 105–130. Springer Netherlands (2009)

  46. Anwar, M.N., Sherief, H.H.: Boundary integral equation formulation for thermoelasticity with two relaxation times. J. Therm. Stress. 17(2), 257–270 (1994)

    Article  MathSciNet  Google Scholar 

  47. Anwar, M.N., Sherief, H.H.: Boundary integral equation formulation of generalized thermoelasticity in a Laplace-transform domain. Appl. Math. Model. 12(2), 161–166 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  48. Chen, J., Dargush, G.F.: Boundary element method for dynamic poroelastic and thermoelastic analyses. Int. J. Solids Struct. 32(15), 2257–2278 (1995)

    Article  MATH  Google Scholar 

  49. Dargush, G.F., Banerjee, P.K.: A boundary element method for axisymmetric soil consolidation. Int. J. Solids Struct. 28(7), 897–915 (1991)

    Article  MATH  Google Scholar 

  50. Cheng, A.H.D., Predeleanu, M.: Transient boundary element formulation for linear poroelasticity. Appl. Math. Model. 11(4), 285–290 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  51. Cheng, A.D., Detournay, E.: On singular integral equations and fundamental solutions of poroelasticity. Int. J. Solids Struct. 35(34–35), 4521–4555 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  52. Nowacki, W.: Fundamental Relations and Equations of Thermoelasticity. Dynamic Problems of Thermoelasticity (English Edition). Noordhoff International Publishing, Leyden (1975)

    Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the constructive suggestions by reviewers and the editor to improve the quality of the present paper.

Funding

One of the authors, Om Namha Shivay, thankfully acknowledges the full financial assistance of the SRF Fellowship (Roll Number 433492, Reference Number 21/06/2015 (i) EU-V) by the University Grant Commission (UGC), India, to carry out the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om Namha Shivay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivay, O.N., Mukhopadhyay, S. Variational principle and reciprocity theorem on the temperature-rate-dependent poro-thermoelasticity theory. Acta Mech 232, 3655–3667 (2021). https://doi.org/10.1007/s00707-021-02996-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02996-5

Navigation