Skip to main content
Log in

A Mathematical Model for Short-Time Filtration in Poroelastic Media with Thermal Relaxation and Two Temperatures

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this work, we derive a set of governing equations for a mathematical model of generalized thermoelasticity in poroelastic materials. This model predicts finite speeds of propagation of waves contrary to the model of coupled thermoelasticity where an infinite speed of propagation is inherent. Next, we prove the uniqueness of solution of these equations under suitable conditions. We also obtain a reciprocity theorem for these equations. A thermal shock problem for a half-space composed of a poroelastic material saturated with a liquid is then considered. The surface of the half-space is assumed to be traction free, permeable, and subjected to heating. The Laplace transform technique is used to solve the problem. Numerical results for the temperature in the elastic body and fluid, displacement of the elastic body, velocity of the fluid, and stresses for both components are obtained and represented graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anwar M., Sherief H.: Boundary integral equation formulation of thermoelasticity in a Laplace transform domain. Appl. Math. Model. 12, 161–166 (1988)

    Article  Google Scholar 

  • Anwar M., Sherief H.: Boundary integral equation formulation for thermoelasticity with two relaxation times. J. Therm. Stress. 17, 257–270 (1994)

    Article  Google Scholar 

  • Biot M.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–198 (1955)

    Article  Google Scholar 

  • Biot M.: Theory of propagation of elastic waves in fluid-saturated porous solid. J. Acoust. Soc. Am. 28, 168–171 (1956)

    Article  Google Scholar 

  • Biot M.: Thermoelasticity and irreversible thermo-dynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  Google Scholar 

  • Biot M.: Variational irreversible thermodynamics of heat and mass-transfer in porous solids—new concepts and methods. Q. Appl. Math. 36, 19–38 (1978)

    Google Scholar 

  • Biot M.: New variational-Lagrangian irreversible thermodynamics with application to viscous-flow, reaction diffusion, and solid mechanics. Adv. Appl. Mech. 24, 1–91 (1984)

    Article  Google Scholar 

  • Cattaneo C.: Sulla coduzione del calore. Atti. Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    Google Scholar 

  • Chen J., Dargush G.: Boundary element method for dynamic poroelastic and thermoelastic analyses. Int. J. Solids Struct. 32, 2257–2278 (1995)

    Article  Google Scholar 

  • Cheng A., Predeleanu M.: Transient boundary element formulation for linear poroelasticity. Appl. Math. Model. 11, 285–290 (1987)

    Article  Google Scholar 

  • Cheng A., Detournay E.: On singular integral equations and fundamental solutions of poroelasticity. Int. J. Solids Struct. 35, 4521–4555 (1998)

    Article  Google Scholar 

  • Cheng A., Badmus T., Beskos D.: Integral-equation for dynamic poroelasticity in frequency-domain with BEM solution. J. Eng. Mech. 117, 1136–1157 (1991)

    Article  Google Scholar 

  • Coussy O., Dormieux L., Detourna E.: From mixture theory to Biot’s approach for porous media. Int. J. Solids Struct. 24, 3508–3524 (1998)

    Google Scholar 

  • Dargush G., Banerjee P.: A boundary element method for axisymmetric soil consolidation. Int. J. Solids Struct. 28, 897–915 (1991)

    Article  Google Scholar 

  • Fourie J., Du Plessis J.: A two-equation model for heat conduction in porous media. Transp. Porous Media 53, 145–161 (2003)

    Article  Google Scholar 

  • Fox N.: Generalized thermoelasticity. Int. J. Eng. Sci. 7, 437–445 (1969)

    Article  Google Scholar 

  • Hasheminejad S.: Modal impedances for a spherical source in a fluid-filled spherical cavity embedded within a fluid-infiltrated elastic porous medium. Int. J. Solids Struct. 35, 129–148 (1998)

    Article  Google Scholar 

  • Honig G., Hirdes U.: A method for the numerical inversion of the laplace transform. J. Comput. Appl. Math. 10, 113–132 (1984)

    Article  Google Scholar 

  • Ignaczak J.: Uniqueness in generalized thermoelasticity. J. Therm. Stress. 2, 171–175 (1979)

    Article  Google Scholar 

  • Lebon G., Jou D., Casas-Vázquez J.: Understanding Non-equilibrium Thermodynamics: Foundations, Applications, Frontiers. Springer-Verlag, Berlin (2008)

    Book  Google Scholar 

  • Lord H., Shulman Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  Google Scholar 

  • Maxwell J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. A 157, 49–88 (1867)

    Article  Google Scholar 

  • Mercer G., Barry S.: Flow and deformation in poroelasticity-II numerical method. Math. Comput. Model. 30, 31–38 (1999)

    Article  Google Scholar 

  • Nield D., Bejan A.: Convection in Porous Media. Springer, New York (2006)

    Google Scholar 

  • Nouri-Borujerdi A., Noghrehabadi A., Rees A.: The effect of local thermal non-equilibrium on conduction in porous channels with a uniform heat source. Transp. Porous Med. 69, 281–288 (2007)

    Article  Google Scholar 

  • Nowinski J.L.: Theory of Thermoelasticity with Applications. Sijthoff Noordhooff Int, Alphen Aan Den Rijn (1978)

    Book  Google Scholar 

  • Pecker C., Deresiewicz H.: Thermal effects on wave propagation in liquid-filled porous media. Acta Mech. 16, 45–64 (1973)

    Article  Google Scholar 

  • Reddy P., Tajuddin M.: Exact analysis of the plane-strain vibrations of thick-walled hollow poroelastic cylinders. Int. J. Solids Struct. 37, 3439–3456 (2000)

    Article  Google Scholar 

  • Sherief H., Dhaliwal R.: A uniqueness theorem and a variational principle for generalized thermoelasticity. J. Therm. Stress. 3, 223–230 (1980)

    Article  Google Scholar 

  • Sherief H.: On uniqueness and stability in generalized thermoelasticity. Q. Appl. Math. 45, 773– 778 (1987)

    Google Scholar 

  • Sherief H., Dhaliwal D.: A generalized one-dimensional thermal shock problem for small times. J. Therm. Stress. 4, 407–420 (1981)

    Article  Google Scholar 

  • Sherief H., Hamza F.: Generalized thermoelastic problem of a thick plate under axisymmetric temperature distribution. J. Therm. Stress. 17, 435–452 (1994)

    Article  Google Scholar 

  • Sherief H., Hamza F., Saleh A.: The theory of generalized thermoelastic diffusion. Int. J. Eng. Sci. 42, 591–608 (2004)

    Article  Google Scholar 

  • Sherief H., Hamza F., El-Sayed M.: Theory of generalized micropolar thermoelasticity and an axisymmetric half-space problem. J. Therm. Stress. 28, 409–437 (2005)

    Article  Google Scholar 

  • Tzou D.: A unified field approach for heat conduction from macro- to micro-scales. J. Heat Trans. 117, 8–16 (1995)

    Article  Google Scholar 

  • Wang L., Xu M., Wei X.: Dual-phase-lagging and porous-medium heat conduction processes. In: Vadász, P. (eds) Emerging Topics in Heat and Mass Transfer in Porous Media, Springer, Berlin (2008)

    Google Scholar 

  • Zolotarev P.: The equations of thermoelasticity for fluid-saturated porous media. Inzh. Zh 5, 425–436 (1965) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hany H. Sherief.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherief, H.H., Hussein, E.M. A Mathematical Model for Short-Time Filtration in Poroelastic Media with Thermal Relaxation and Two Temperatures. Transp Porous Med 91, 199–223 (2012). https://doi.org/10.1007/s11242-011-9840-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9840-8

Keywords

Navigation