Skip to main content
Log in

Lord–Shulman Thermoelasticity with Microtemperatures

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

In this paper we consider the Lord–Shulman thermoelastic theory with porosity and microtemperatures. The new aspect we propose here is to introduce a relaxation parameter in the microtemperatures. Then we obtain an existence theorem for the solutions. In the case that a certain symmetry is satisfied by the constitutive tensors, we prove that the semigroup is dissipative. In fact, an exponential decay of solutions can be shown for the one-dimensional case. In the last section, we restrict our attention to the case where we have an isotropic and homogeneous material without porosity effects and assuming that two of the constitutive parameters have the same sign. We see that the semigroup is dissipative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the general case the materials responses depend on the loading directions. In the case that the response is invariant under inversion we say that the material is centrosymmetric. It implies that the constitutive tensors of odd order vanish.

  2. It is clear that we could consider a general case when the relaxation parameter for the microstructure is different from the one for the macrostructure. But in this paper we want to restrict our attention to the easier case where both parameters coincide.

References

  1. Aouadi, M., Ciarletta, M., Passarella, F.: Thermoelastic theory with microtemperatures and dissipative thermodynamics. J. Thermal Stress. 41, 522–542 (2018)

    Google Scholar 

  2. Bazarra, N., Campo, M., Fernández, J.R.: A thermoelastic problem with diffusion, microtemperatures, and microconcentrations. Acta Mech. 230, 31–48 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Casas, P., Quintanilla, R.: Exponential stability in thermoelasticity with microtemperatures. Int. J. Eng. Sci. 43, 33–47 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Casas, P., Quintanilla, R.: Exponential decay in one-dimensional porous-thermoelasticity. Mech. Res. Commun. 32, 652–658 (2005)

    MATH  Google Scholar 

  5. Cattaneo, C.: On a form of heat equation which eliminates the paradox of instantaneous propagation. C. R. Acad. Sci. Paris 247, 431–433 (1958)

    MathSciNet  MATH  Google Scholar 

  6. Chirita, S., Ciarletta, M., D’Apice, C.: On the theory of thermoelasticity with microtemperatures. J. Math. Anal. Appl. 397, 349–361 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Ciarletta, M., Passarella, F., Tibullo, V.: Plane harmonic waves in strongly elliptic thermoelastic materials with microtemperatures. J. Math. Anal. Appl. 424, 1186–1197 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Ciarletta, M., Straughan, B., Tibullo, V.: Structural stability for a rigid body with thermal microstructure. Int. J. Eng. Sci. 48, 592–598 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Cowin, S.C.: The viscoelastic behavior of linear elastic materials with voids. J. Elast. 15, 185–191 (1985)

    MATH  Google Scholar 

  10. Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13, 125–147 (1983)

    MATH  Google Scholar 

  11. Eringen, A.C.: Microcontinuum Field Theories I. Foundations and Solids. Springer, New York (1999)

    MATH  Google Scholar 

  12. Feng, B., Apalara, T.A.: Optimal decay for a porous elasticity system with memory. J. Math. Anal. Appl. 470, 1108–1128 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Feng, B., Yin, M.: Decay of solutions for a one-dimensional porous elasticity system with memory: the case of non-equal wave speeds. Math. Mech. Solids 24, 2361–2373 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Grot, R.: Thermodynamics of a continuum with microstructure. Int. J. Eng. Sci. 7, 801–814 (1969)

    MATH  Google Scholar 

  15. Ieşan, D.: Thermoelasticity of bodies with microstructure and microtemperatures. Int. J. Solids Struct. 44, 8648–8653 (2007)

    MATH  Google Scholar 

  16. Ieşan, D.: On a theory of thermoelasticity without energy dissipation for solids with microtemperatures. ZAMM Z. Angew. Math. Mech. 98, 870–885 (2018)

    MathSciNet  Google Scholar 

  17. Ieşan, D., Quintanilla, R.: On thermoelastic bodies with inner structure and microtemperatures. J. Math. Anal. Appl. 354, 12–23 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Ieşan, D., Quintanilla, R.: On a theory of thermoelasticity with microtemperatures. J. Thermal Stress. 23, 195–215 (2000)

    MathSciNet  Google Scholar 

  19. Ieşan, D., Quintanilla, R.: On a theory of thermoelastic materials with double porosity structure. J. Thermal Stress. 37, 1017–1036 (2014)

    Google Scholar 

  20. Ieşan, D., Quintanilla, R.: Qualitative properties in strain gradient thermoelasticity with microtemperatures. Math. Mech. Solids 23, 240–258 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Jaiani, G., Bitsadze, L.: On basic problems for elastic prismatic shells with microtemperatures. ZAMM Z. Angew. Math. Mech. 96, 1082–1088 (2016)

    MathSciNet  Google Scholar 

  22. Kumar, R., Vohra, R.: Effect of hall current in thermoelastic materials with double porosity structure. Int. J. Appl. Mech. Eng. 22, 303–319 (2017)

    Google Scholar 

  23. Kumar, R., Vohra, R.: Forced vibrations of a thermoelastic double porous microbeam subjected to a moving load. J. Theor. Appl. Mech. 57, 155–166 (2019)

    Google Scholar 

  24. Kumar, R., Vohra, R., Gorla, M.: Reflection of plane waves in thermoelastic medium with double porosity. Multidiscip. Model. Mater. Struct. 12, 748–778 (2016)

    Google Scholar 

  25. Leseduarte, M.C., Magaña, A., Quintanilla, R.: On the time decay of solutions in porous-thermo-elasticity of type II. Discret. Cont. Dyn. Syst. B 13, 375–391 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems. Chapman & Hall/CRC Research Notes in Mathematics, vol. 398. Chapman & Hall/CRC, Boca Raton, FL (1999)

    MATH  Google Scholar 

  27. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    MATH  Google Scholar 

  28. Magaña, A., Quintanilla, R.: On the spatial behavior of solutions for porous elastic solids with quasi-static microvoids. Math. Comp. Model. 44, 710–716 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Magaña, A., Quintanilla, R.: On the exponential decay of solutions in one-dimensional generalized porous-thermo-elasticity. Asymptot. Anal. 49, 173–187 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Magaña, A., Quintanilla, R.: On the time decay of solutions in porous-elasticity with quasi-static microvoids. J. Math. Anal. Appl. 331, 617–630 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Magaña, A., Quintanilla, R.: Exponential stability in type III thermoelasticity with microtemperatures. ZAMP Z. Angew. Math. Phys. 69(5), 129(1)–129(8) (2018)

    MathSciNet  MATH  Google Scholar 

  32. Magaña, A., Quintanilla, R.: Exponential stability in three-dimensional type III thermo- porous-elasticity with microtemperatures. J. Elast. 139, 153–161 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Miranville, A., Quintanilla, R.: Exponential decay in one-dimensional type III thermoelasticity with voids. Appl. Math. Lett. 94, 30–37 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Miranville, A., Quintanilla, R.: Exponential decay in one-dimensional type II thermoviscoelasticity with voids. J. Comput. Appl. Math. 368, 112573 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Nunziato, J.W., Cowin, S.C.: A nonlinear theory of elastic materials with voids. Arch. Ration. Mech. Anal. 72, 175–201 (1979)

    MathSciNet  MATH  Google Scholar 

  36. Pamplona, P.X., Muñoz-Rivera, J.E., Quintanilla, R.: On the decay of solutions for porous-elastic systems with history. J. Math. Anal. Appl. 379, 682–705 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Pamplona, P.X., Muñoz-Rivera, J.E., Quintanilla, R.: Analyticity in porous-thermoelasticity with microtemperatures. J. Math. Anal. Appl. 394, 645–655 (2012)

    MathSciNet  MATH  Google Scholar 

  38. Passarella, F., Tibullo, V., Viccione, G.: Rayleigh waves in isotropic strongly elliptic thermoelastic materials with microtemperatures. Meccanica 52, 3033–3041 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Quintanilla, R.: On the growth and continuous dependence in thermoelasticity with microtemperatures. J. Thermal Stress. 34, 911–922 (2011)

    Google Scholar 

  40. Quintanilla, R.: On the logarithmic convexity in thermoelasticity with microtemperatures. J. Thermal Stress. 36, 378–386 (2013)

    Google Scholar 

  41. Riha, P.: On the theory of heat-conducting micropolar fluids with microtemperatures. Acta Mech. 23, 1–8 (1975)

    MATH  Google Scholar 

  42. Riha, P.: On the microcontinuum model of heat conduction in materials with inner structure. Int. J. Eng. Sci. 14, 529–535 (1976)

    Google Scholar 

  43. Santos, M.L., Campelo, A.D.S., Almeida Júnior, D.S.: On the decay rates of porous elastic systems. J. Elast. 127, 79–101 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Straughan, B.: Mathematical Aspects of Multi-porosity Continua, Advances in Mechanics and Mathematics, 38. Springer, Cham (2017)

    Google Scholar 

  45. Svanadze, M.: On the linear equilibrium theory of elasticity for materials with triple voids. Q. J. Mech. Appl. Math. 71, 329–348 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Svanadze, M.: Steady vibration problems in the theory of elasticity for materials with double voids. Acta Mech. 229, 1517–1536 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Verma, P.D.S., Singh, D.V., Singh, K.: Poiseuille flow of microthermopolar fluids in a circular pipe. Acta Tech. CSAV 24, 402–412 (1979)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for theirs useful comments which allow us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. Fernández.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of J.R. Fernández was partially supported by Ministerio de Ciencia, Innovación y Universidades under the research project PGC2018-096696-B-I00 (FEDER, UE). The work of R. Quintanilla was supported by project “Análisis Matemático de Problemas de la Termomecánica” (MTM2016-74934-P), (AEI/FEDER, UE) of the Spanish Ministry of Economy and Competitiveness, and it is also part of the project “Análisis Matemático Aplicado a la Termomecánica” which is currently submitted to the Spanish Ministry of Science, Innovation and Universities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazarra, N., Fernández, J.R. & Quintanilla, R. Lord–Shulman Thermoelasticity with Microtemperatures. Appl Math Optim 84, 1667–1685 (2021). https://doi.org/10.1007/s00245-020-09691-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-020-09691-2

Keywords

Navigation