Skip to main content
Log in

Effect of contacting bodies’ mechanical properties on the dynamics of a rolling cylinder

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper investigates the influence of the material properties on the deceleration dynamics of a deformable cylinder rolling with slipping on a half-space of the same material. The interaction of the cylinder and the half-space is described by the 2D quasistatic contact problem of viscoelasticity (Goryacheva: J Appl Math Mech 37(5):877–885, 1973; Contact mechanics in tribology. Kluwer, Dordrecht 1998) which includes as limiting cases the absolutely rigid and elastic materials. Full dynamical analysis of the problem including the phase portrait, the dependence of the deceleration distance on the mechanical properties of the contacting bodies and on the friction coefficient is provided. The qualitative features of deceleration are justified by asymptotic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goriacheva, I.G.: Contact problem of rolling of a viscoelastic cylinder on a base of the same material. J. Appl. Math. Mech. 37(5), 877–885 (1973)

    Article  Google Scholar 

  2. Goryacheva, I.G.: Contact mechanics in tribology. Kluwer, Dordrecht (1998)

    Book  Google Scholar 

  3. Marques, F., Flores, P., Claro, J.C.P., Lankarani, H.M.: Modeling and analysis of friction including rolling effects in multibody dynamics: a review. Multibody Syst. Dyn. 45(2), 223–244 (2019)

    Article  MathSciNet  Google Scholar 

  4. Filippov, A.F.: Differential equations with discontinuous righthand sides: control systems, vol. 18. Springer, Berlin (2013)

    Google Scholar 

  5. Anitescu, M., Potra, F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn. 14(3), 231–247 (1997)

    Article  MathSciNet  Google Scholar 

  6. Pfeiffer, F., Glocker, C.: Multibody dynamics with unilateral contacts. Wiley, New York (1996)

    Book  Google Scholar 

  7. Antali, M., Stepan, G.: Nonsmooth analysis of three-dimensional slipping and rolling in the presence of dry friction. Nonlinear Dyn. 97(3), 1799–1817 (2019)

    Article  Google Scholar 

  8. Pöschel, T., Brilliantov, N.V., Zaikin, A.: Bistability and noise-enhanced velocity of rolling motion. Europhys. Lett. (EPL) 69(3), 371–377 (2005)

    Article  Google Scholar 

  9. Vil’ke, V.G., Migunova, D.S.: The motion of a ball on a grassy lawn. J. Appl. Math. Mech. 75(5), 560–567 (2011)

    Article  MathSciNet  Google Scholar 

  10. Al-Bender, F., Van Brussel, H., De Moerlooze, K.: A generalised asperity-based friction model. Tribol. Lett. 40, 113–130 (2010)

    Article  Google Scholar 

  11. De Moerlooze, K., Al-Bender, F., Van Brussel, H.: Modeling of the dynamic behavior of systems with rolling elements. Int. J. Non-Linear Mech. 46, 222–233 (2011)

    Article  Google Scholar 

  12. Zobova, A.A.: Dry friction distributed over a contact patch between a rigid body and a visco-elastic plane. Multibody Syst. Dyn. 45(2), 203–222 (2019)

    Article  MathSciNet  Google Scholar 

  13. Leine, R.I., Glocker, C.: A set-valued force law for spatial coulomb-contensou friction. Eur. J. Mech. A/Solids 22(2), 193–216 (2003)

    Article  MathSciNet  Google Scholar 

  14. Kireenkov, A.A., Semendyaev, S.V., Filatov, V.F.: Experimental study of coupled two-dimensional models of sliding and spinning friction. Mech. Solids 45(6), 921–930 (2010)

    Article  Google Scholar 

  15. Kudra, G., Awrejcewicz, J.: Application and experimental validation of new computational models of friction forces and rolling resistance. Acta Mech. 226(9), 2831–2848 (2015)

    Article  Google Scholar 

  16. Kudra, G., Szewc, M., Wojtunik, I., Awrejcewicz, J.: Shaping the trajectory of the billiard ball with approximations of the resultant contact forces. Mechatronics 37, 54–62 (2016)

    Article  Google Scholar 

  17. Contensou, P.: Couplage entre frottement de glissement et frottement de pivotement dans la théorie de la toupie. In: Kreiselprobleme/Gyrodynamics, pp. 201–216. Springer (1963)

  18. Zhuravlev, V.P.: The model of dry friction in the problem of the rolling of rigid bodies. J. Appl. Math. Mech. 62(5), 705–710 (1998)

    Article  MathSciNet  Google Scholar 

  19. Alinia, Y., Zakerhaghighi, H., Adibnazari, S., Güler, M.A.: Rolling contact problem for an orthotropic medium. Acta Mech. 228(2), 447–464 (2017)

    Article  MathSciNet  Google Scholar 

  20. Buezas, F.S., Fochesatto, N.S.: Power dissipation of a viscoelastic rolling wheel in finite deformations. Int. J. Mech. Sci. 138, 502–514 (2018)

    Article  Google Scholar 

  21. Balci, M.N., Dag, S.: Solution of the dynamic frictional contact problem between a functionally graded coating and a moving cylindrical punch. Int. J. Solids Struct. 161, 267–281 (2019)

    Article  Google Scholar 

  22. Goryacheva, I., Miftakhova, A.: Modelling of the viscoelastic layer effect in rolling contact. Wear 430, 256–262 (2019)

    Article  Google Scholar 

  23. Iguchi, Y., Hemthavy, P., Saito, S., Takahashi, K.: Analytical solution of elastic deformations inside and outside circular contact area between tilted rigid punch and elastic half space. Acta Mech. 230(12), 4311–4320 (2019)

    Article  MathSciNet  Google Scholar 

  24. Nili, A., Adibnazari, S., Karimzadeh, A.: Rolling contact mechanics of graded coatings involving frictional heating. Acta Mech. 230(6), 1981–1997 (2019)

    Article  MathSciNet  Google Scholar 

  25. Shahani, A.R., Babaei, M.: The crack propagation path for a system of surface and subsurface cracks and their interactions due to rolling contact fatigue. Acta Mechanica, pages 1–14 (2020)

  26. Goryacheva, I.G., Zobova, A.A.: Dynamics of the motion of an elastic cylinder along an elastic plane. Mech. Solids 54(2), 271–277 (2019)

    Article  Google Scholar 

  27. Zobova, A.A., Goryacheva, I.G.: Dynamics of a viscoelastic cylinder on viscoelastic half-space. Acta Mech. 231, 2217–2230 (2020)

    Article  MathSciNet  Google Scholar 

  28. Carter, F.W.: On the action of a locomotive driving wheel. Proc. R. Soc. London Ser. A 112(760), 151–157 (1926)

    Article  Google Scholar 

  29. de Jesus, V.L.B., Sasaki, D.G.G.: Vídeo-análise de um experimento de baixo custo sobre atrito cinético e atrito de rolamento. Revista Brasileira de Ensino de Física 36(3), 1–6 (2014)

    Article  Google Scholar 

  30. Suárez, Á., Baccino, D., Martí, A.C.: Video-based analysis of the transition from slipping to rolling. Phys. Teach. 58(3), 170–172 (2020)

    Article  Google Scholar 

  31. La Salle, J., Lefschetz, S.: Stability by Liapunov’s direct method with applications. Elsevier, Amsterdam (2012)

    MATH  Google Scholar 

  32. Rouche, N., Habets, P., Laloy, M.: Stability theory by Liapunov’s direct method, vol. 4. Springer, Berlin (1977)

    Book  Google Scholar 

  33. Arnold, V.I., Afrajmovich, V.S., Il’yashenko, YuS, Shil’nikov, L.P.: Dynamical systems V: bifurcation theory and catastrophe theory, vol. 5. Springer, Berlin (2013)

    Google Scholar 

  34. Goryacheva, I.G., Zobova, A.A.: Deceleration of a hard cylinder sliding on a viscoelastic base. Mech. Solids 54(2), 278–288 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra A. Zobova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The part of the work related to the dynamic analysis was performed under the support of the Russian Foundation for Basic Research (Project 19-01-00140), and the part related to the contact problem analysis within the framework of a State assignment, State registration No. AAAA-A20-120011690132-4.

Appendix

Appendix

Statement 1

(full dissipativity). The kinetic energy of the cylinder

$$\begin{aligned} T(\tilde{V},\tilde{\omega }) = \frac{\tilde{V}^2}{2} + j\frac{\tilde{\omega }^2}{2} \end{aligned}$$
(14)

decreases in time for all the motions except for full rest (\(\tilde{V}= 0\) and \(\tilde{\omega }= 0\)).

Proof

Using Eq. (5), the time derivative of the kinetic energy on the solutions \(\tilde{V}(\tilde{t})\), \(\tilde{\omega }(\tilde{t})\) can be expressed in two equivalent forms:

$$\begin{aligned} \frac{\mathrm{d}T}{\mathrm{d}\tilde{t}}= & {} \gamma \left( \tilde{Q}- \frac{\tilde{M}}{2}\right) \tilde{V}- \gamma \left( \tilde{Q}+ \frac{\tilde{M}}{2}\right) \tilde{\omega }= -\gamma \left( \Big (\tilde{Q}+\frac{\tilde{M}}{2}\Big )\tilde{V}\delta +\tilde{M}\tilde{V}\right) , \end{aligned}$$
(15)
$$\begin{aligned} \frac{\mathrm{d}T}{\mathrm{d}\tilde{t}}= & {} -\gamma \left( \tilde{Q}\tilde{V}\delta +\frac{\tilde{M}}{2}\tilde{V}(2 + \delta )\right) . \end{aligned}$$
(16)

Based on the calculation results shown in Fig. 2, in the full slipping regime \(|\delta |\ge \delta _\alpha ^*(\tilde{V})\), we consider the term \(\tilde{Q}= \mu \,\mathrm {sign}(\tilde{\omega }-\tilde{V})\) as the leading one in Eq. (5). Hence, \(|\tilde{Q}|>|\tilde{M}|\) and \(\mathrm {sign}\Big (\tilde{Q}+\tilde{M}/2\Big ) =\mathrm {sign}\tilde{Q}\). Besides, we have (see Sect. 3)

$$\begin{aligned} \tilde{Q}\tilde{V}\delta = \mu |\tilde{\omega }-\tilde{V}|>0\quad \text {and} \quad \tilde{M}\tilde{V}>0\ \text {if}\ \tilde{V}\ne 0. \end{aligned}$$

Therefore, from (15) we get \(\dfrac{\mathrm{d}T}{\mathrm{d}\tilde{t}}<0\) for \(\tilde{V}\ne 0\) (since \(|\delta |\ge \delta _\alpha ^*(\tilde{V})\), then \(\tilde{\omega }\ne \tilde{V}\)).

If \(|\delta |<\delta _\alpha ^*(\tilde{V})\), then \(2+\delta >0\) and from (16), we get again \(\dfrac{\mathrm{d}T}{\mathrm{d}\tilde{t}}<0\) for \(\tilde{V}\ne 0, \tilde{\omega }\ne 0\). Besides, we notice that \( \frac{\mathrm{d}T}{\mathrm{d}\tilde{t}} = 0\) if and only if \(\tilde{\omega }= 0\) and \(\tilde{V}= 0\) simultaneously. \(\square \)

Statement 2

(Global asymptotical stability of the equilibrium). There exists a unique asymptotically stable fixed point \(\tilde{V}= 0\), \(\tilde{\omega }= 0\) of Eq. (5); all solutions of these equations tend to this point: \(\tilde{V}(\tilde{t})\rightarrow 0,\tilde{\omega }(\tilde{t})\rightarrow 0\).

Proof

follows from Barbashin–Krasovskii–LaSalle principle [31, 32] with a full energy of the system as Lyapunov function. \(\square \)

Statement 3

(slow manifold). For any initial condition, there exists an instant \(\tilde{t}^*\) such that for any \(\tilde{t}>\tilde{t}^*\), the phase curve goes in \({\mathcal {O}}(\kappa ^{-1})\)—neighborhood of the slow manifold that is defined by the equation

$$\begin{aligned} \tilde{Q}(\tilde{V},\tilde{\omega }) =-\frac{1-j}{1+j}\cdot \frac{\tilde{M}(\tilde{V})}{2} . \end{aligned}$$
(17)

Thus, the estimate

$$\begin{aligned} \tilde{Q}(\tilde{V}(\tilde{t}),\tilde{\omega }(\tilde{t})) =-\frac{\tilde{M}(\tilde{V}(\tilde{t}))}{2}\frac{1-j}{1+j}(1 + {\mathcal {O}}(\kappa ^{-1})) \end{aligned}$$
(18)

holds true on the solution \(\tilde{V}(\tilde{t})\), \(\tilde{\omega }(\tilde{t})\) of Eq. (5) for \(\tilde{t}>\tilde{t}^*\).

Proof

Let us consider dynamics of the system in the variables

$$\begin{aligned} C = \tilde{V}+j\tilde{\omega },\quad V_s = \tilde{\omega }-\tilde{V}, \end{aligned}$$
(19)

where C is the value of the first integral for rigid and elastic case defined in Eq. (11) and \(V_s = \delta \tilde{V}\) is the slippage. Then, the governing equations equivalent to Eq. (5) have the form

$$\begin{aligned} \frac{\mathrm{d} C}{\mathrm{d} \tilde{t}}= & {} -{\gamma } {\tilde{M}}, \end{aligned}$$
(20)
$$\begin{aligned} \frac{\mathrm{d} V_s}{\mathrm{d} \tilde{t}}= & {} -\gamma \tilde{Q}\frac{1+j}{j} -\gamma \frac{\tilde{M}}{2}\frac{1-j}{j}. \end{aligned}$$
(21)

Since the leading term in the right-hand side of Eq. (21) is \(\tilde{Q}\) and \(\tilde{M}= {\mathcal {O}}({\kappa ^{-1}})\), then \(C(\tilde{t})\) is a slow variable and \(V_s(\tilde{t})\) is a fast variable. For any fixed value of C, there exists a unique asymptotically stable critical point \(V_s^* = V_s^*(C)\) of the fast equation (Eq. (21)). The critical points are defined in the following equation where the inverse to Eq. (19) coordinate change is used:

$$\begin{aligned} \tilde{Q}(\tilde{V}(C,V_s^*),\tilde{\omega }(C,V_s^*)) =-\frac{\tilde{M}(\tilde{V}(C,V_s^*))}{2}\frac{1-j}{1+j}. \end{aligned}$$
(22)

Thus, the critical points of Eq. (21) in initial variables have the form \(\tilde{V}^* = \tilde{V}^*(V_s^*(C),C)\) and \(\tilde{\omega }^* = \tilde{\omega }^*(V_s^*(C),C)\).

These critical points form a slow manifold that includes the origin of the phase space \(\tilde{V}= \tilde{\omega }= 0\). After a finite time \(\tilde{t}^*\), the phase point moves in its \({\mathcal {O}}(\kappa ^{-1})\) – neighborhood slowly [33]; thus,

$$\begin{aligned} \tilde{V}(\tilde{t}) = \tilde{V}^*(V_s^*(C),C)(1+{\mathcal {O}}(\kappa ^{-1})), \ \tilde{\omega }(\tilde{t}) = \tilde{\omega }^*(V_s^*(C),C)(1+{\mathcal {O}}(\kappa ^{-1})). \end{aligned}$$

Substituting it into Eq. (17), we get Eq. (18). \(\square \)

Lemma

$$\begin{aligned} \left. \frac{\mathrm{d}\tilde{M}}{\mathrm{d}\tilde{V}}\right| _{\tilde{V}= 0} = \frac{\alpha -1}{\alpha } \end{aligned}$$

Proof

In [34, Appendix] using the asymptotics of Bessel functions, it has been shown that \(\lambda = 1\), \(\varepsilon = 0\) and \(1/\zeta = 0\) for \(\tilde{V}= 0\). Hence, from Eq. (7) we get

$$\begin{aligned} \left. \frac{\mathrm{d}\tilde{M}}{\mathrm{d}\tilde{V}}\right| _{\tilde{V}= 0} = \left. \kappa ^{-1} \frac{\mathrm{d}}{\mathrm{d}\tilde{V}}\left[ \frac{\kappa \tilde{V}}{\lambda }\left( \lambda ^2 -\frac{1}{\alpha }\right) \right] \right| _{\tilde{V}= 0} = \frac{\alpha -1}{\alpha }. \end{aligned}$$

\(\square \)

Statement 4

(asymptotically exponential deceleration). For any initial conditions and for any constant \(k>0\), there exists a time instant \(\tilde{t}^{**}=\tilde{t}^{**}(k)<+\infty \) and a constant \(K=K(k)\) such that the velocity \(\tilde{V}\) decreases faster than exponentially:

$$\begin{aligned} |\tilde{V}(\tilde{t})|\le K\exp \left( {-\gamma \frac{\alpha -1}{(1+j)(1+k)\alpha }\tilde{t}}\right) \quad \text {for }\tilde{t}>\tilde{t}^{**}. \end{aligned}$$

Note that the constant K depends also on initial conditions.

Proof

We calculate the time derivative with respect to Eq. (5):

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}\tilde{t}}\frac{\tilde{V}^2}{2} = \gamma \tilde{V}\left( \tilde{Q}- \frac{\tilde{M}}{2}\right) . \end{aligned}$$

Substituting here \(\tilde{Q}\) from Eq. (18), we get

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}\tilde{t}}\frac{\tilde{V}^2}{2} = -\gamma \frac{\tilde{M}}{1+j}\tilde{V}\left( 1+O(\kappa ^{-1})\right) \quad \text {for }\tilde{t}>\tilde{t}^{*}. \end{aligned}$$

Having \(\tilde{V}(\tilde{t})\rightarrow 0\) (Statement 2) and based on the lemma, we conclude that for any \(k>0\), there exists a finite time instant \(\tilde{t}^{**}\ge \tilde{t}^*\) such that

$$\begin{aligned} |\tilde{M}(\tilde{V})|\ge \frac{\alpha -1}{\alpha }\frac{|\tilde{V}|}{1+k}, \end{aligned}$$

and therefore,

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}\tilde{t}}\frac{\tilde{V}^2}{2} \le -\gamma \frac{\alpha -1}{(1+j)\alpha }\frac{2}{1+k}\frac{\tilde{V}^2}{2}\left( 1+O(\kappa ^{-1})\right) . \end{aligned}$$

Integrating through time and neglecting the terms of order \(O(\kappa ^{-1})\), we get

$$\begin{aligned} \frac{\tilde{V}^2}{2}\le & {} K_0\exp \left( -\gamma \frac{\alpha -1}{(1+j)\alpha }\frac{2}{1+k}\tilde{t}\right) \Rightarrow \\ |\tilde{V}|\le & {} K\exp \left( -\gamma \frac{\alpha -1}{(1+j)\alpha }\frac{1}{1+k}\tilde{t}\right) \text { for any } k> 0 \text { and }\tilde{t}>\tilde{t}^{**} \end{aligned}$$

\(\square \)

Theorem

(finiteness of the distance till stop). For viscoelastic material with parameters \(\kappa \gg 1\), \(\alpha >1\) and friction coefficient \(\mu >0\) for any initial conditions \(\tilde{V}_0\) and \(\tilde{\omega }_0\), the axis of the cylinder moves on a finite distance.

Proof

The distance till stop is

$$\begin{aligned} |\tilde{\xi }(+\infty )| = \left| \int \limits _0^{+\infty } \tilde{V}(\tilde{t})\mathrm{d}\tilde{t}\right| \le \int \limits _0^{\tilde{t}^{**}} |\tilde{V}(\tilde{t})|\mathrm{d}\tilde{t}+ \int \limits _{\tilde{t}^{**}}^{+\infty } |\tilde{V}(\tilde{t})|\mathrm{d}\tilde{t}. \end{aligned}$$

Since the kinetic energy (14) does not increase, we have

$$\begin{aligned} |\tilde{V}(\tilde{t})|\le \sqrt{2T(\tilde{V}_0,\tilde{\omega }_0)} = \sqrt{\tilde{V}_0^2 + j\tilde{\omega }_0^2} \end{aligned}$$

and using Statement 4, we have

$$\begin{aligned} |\tilde{\xi }(+\infty )|\le \tilde{t}^{**}\sqrt{\tilde{V}_0^2 + j\tilde{\omega }_0^2} + K\frac{(1+j)\alpha (1+k)}{\gamma (\alpha -1)} \end{aligned}$$

\(\square \)

Remark

The theorem is not true for elastic materials \((\alpha = 1)\). In this case, the distance till full stop is infinite for almost all initial conditions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zobova, A.A., Goryacheva, I.G. Effect of contacting bodies’ mechanical properties on the dynamics of a rolling cylinder. Acta Mech 232, 1971–1982 (2021). https://doi.org/10.1007/s00707-020-02800-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02800-w

Navigation