Skip to main content
Log in

Dry friction distributed over a contact patch between a rigid body and a visco-elastic plane

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

We consider the dynamics of an absolutely rigid body moving along a rough horizontal plane. We assume that the plane deforms during the motion so that the contact patch is non-planar and has non-zero, but comparatively small area. In the contact patch, the vertical reactions are proportional to the vertical deformations and their rates, that is, we consider Kelvin–Voigt model. The tangent forces are assumed to be classic Coulomb dry friction in sliding regime (no stiction in contact patch). Due to the viscous part of Kelvin–Voigt law, the contact patch, the plane’s normal reaction, friction force and torque depend on the position, orientation, velocity of the center of mass and the angular velocity of the body. The model does not involve any additional dynamic parameter and gives the friction force and torque directly for any given state of the body. To show the advances of the model, we recall the analytical solution of Cauchy’s initial problem with general initial conditions of ODE governing the dynamics of the homogeneous sphere on a horizontal plane (results of Zobova and Treschev in Proc. Steklov Inst. Math. 281:91–118, 2013). Here we generalize the model for arbitrary convex bodies and study its main properties. The model is compared to the continuous velocity-base friction model for pure sliding (Brown and McPhee in ASME J. Comput. Nonlinear Dyn. 11(5):054502, 2016) and to the combined dry friction (Awrejcewicz and Kudra in Multibody Syst. Dyn., 2018, https://doi.org/10.1007/s11044-018-9624-9) in case of sliding with spinning. We illustrate the model considering the results of numerical integration of the Cauchy problem for a controlled differential-drive vehicle on a horizontal plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Wheels with tires are more suitable for the vehicles. However, here we give an example of a particular MBS modeling with the proposed contact model. As a prospect, we notice that the model can be generalized for a contact of deformable body and rigid plane that can be more suitable for the modeling of wheels with tires.

References

  1. Zobova, A.A., Treschev, D.V.: Ball on a viscoelastic plane. Proc. Steklov Inst. Math. 281, 91–118 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brown, P., McPhee, J.: A continuous velocity-based friction model for dynamics and control with physically meaningful parameters. ASME J. Comput. Nonlinear Dyn. 11(5), 054502 (2016)

    Article  Google Scholar 

  3. Awrejcewicz, J., Kudra, G.: Rolling resistance modelling in the Celtic stone dynamics. Multibody Syst. Dyn. (2018). https://doi.org/10.1007/s11044-018-9624-9

    Google Scholar 

  4. De Moerlooze, K., Al-Bender, F.: Experimental investigation into the tractive prerolling behavior of balls in V-grooved tracks. Adv. Tribol. 2008, 561280 (2008)

    Google Scholar 

  5. Nikolić, M., Borovac, B., Raković, M.: Dynamic balance preservation and prevention of sliding for humanoid robots in the presence of multiple spatial contacts. Multibody Syst. Dyn. 42, 197–218 (2018)

    Article  MathSciNet  Google Scholar 

  6. Brown, P., McPhee, J.: A 3D ellipsoidal volumetric foot–ground contact model for forward dynamics. Multibody Syst. Dyn. 42(4), 447–467 (2018)

    Article  MathSciNet  Google Scholar 

  7. Borisov, A.V., Karavaev, Y.L., Mamaev, I.S., Erdakova, N.N., Ivanova, T.B., Tarasov, V.V.: Experimental investigation of the motion of a body with an axisymmetric base sliding on a rough plane. Regul. Chaotic Dyn. 20, 518–541 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Pennestrì, E., Rossi, V., Salvini, P., Valentini, P.P.: Review and comparison of dry friction force models. Nonlinear Dyn. 83, 1785–1801 (2016)

    Article  MATH  Google Scholar 

  9. Brogliato, B., ten Dam, A., Paoli, L., Génot, F., Abadie, M.: Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. Appl. Mech. Rev. 55(2), 107 (2002)

    Article  Google Scholar 

  10. Contensou, P.: Couplage entre frottement de glissement et frottement de pivotement dans la teorie de la toupie. Kreiselsprobleme, Gyrodynamics. Symp. Springer, Berlin (1963)

    MATH  Google Scholar 

  11. Leine, R.I., Glocker, C.: A set-valued force law for spatial Coulomb–Contensou friction. In: 19th Biennial Conference on Mechanical Vibration and Noise, Parts A, B, and C, vol. 5 (2003)

    Google Scholar 

  12. Zobova, A.: Various friction models in two-sphere top dynamics. Mech. Solids 48(2), 134–139 (2013)

    Article  Google Scholar 

  13. Goryacheva, I.G.: Contact Mechanics in Tribology. Theoretical Mechanics. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  14. Kalker, J.: Rolling Contact Phenomena—Linear Elasticity (2000)

    MATH  Google Scholar 

  15. Ivanov, A.: A dynamically consistent model of the contact stresses in the plane motion of a rigid body. J. Appl. Math. Mech. 73(2), 134–144 (2009)

    Article  MathSciNet  Google Scholar 

  16. Zobova, A.: A review of models of distributed dry friction. J. Appl. Math. Mech. 80(2), 141–148 (2016)

    Article  MathSciNet  Google Scholar 

  17. Al-Bender, F., Swevers, J.: Characterization of friction force dynamics. IEEE Control Syst. 28, 64–81 (2008)

    Article  MATH  Google Scholar 

  18. Al-Bender, F., De Moerlooze, K.: A model for the transient behavior of tractive rolling contacts. Adv. Tribol. 2008, 214894 (2008)

    Google Scholar 

  19. de Wit, C.C., Olsson, H., Astrom, K.J., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40, 419–425 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhuravlev, V.: The model of dry friction in the problem of the rolling of rigid bodies. J. Appl. Math. Mech. 62(5), 705–710 (1998)

    Article  MathSciNet  Google Scholar 

  21. Karapetyan, A.: A two-parameter friction model. J. Appl. Math. Mech. 73(4), 367–370 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. MacMillan, W.: Dynamics of Rigid Bodies. Theoretical Mechanics. McGraw-Hill, New York (1936)

    MATH  Google Scholar 

  23. Karapetyan, A.V., Zobova, A.A.: Tippe-top on visco-elastic plane: steady-state motions, generalized Smale diagrams and overturns. Lobachevskii J. Math. 38(6), 1007–1013 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The work is supported by Russian Foundation for Basic Research (project 16-01-00338).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra A. Zobova.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zobova, A.A. Dry friction distributed over a contact patch between a rigid body and a visco-elastic plane. Multibody Syst Dyn 45, 203–222 (2019). https://doi.org/10.1007/s11044-018-09637-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-018-09637-1

Keywords

Navigation