Skip to main content
Log in

Robust topological design of actuator-coupled structures with hybrid uncertainties

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Based on the bidirectional evolutionary structural optimization method, a robust topology optimization (RTO) algorithm is developed for actuator-coupled structures with hybrid uncertainties. The hybrid interval random variables model is adopted to simulate the uncertainty of the mechanical and piezoelectric parameters. The worst case of the compliance is set as the robust objective function. A hybrid uncertainty perturbation analysis method (HUPAM) is proposed to estimate the expectation and standard variance of the robust objective function. The density-based interpolation scheme is employed to establish the design variables, and the sensitivity of the robust objective function with respect to the design variables is derived. The robust topologies of the host structure and the optimal placement of the coupled actuators are obtained by the proposed RTO approach. Several numerical examples are presented to show the effectiveness of the proposed method, and the Monte Carlo method is used to validate the accuracy of the HUPAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aridogan, U., Basdogan, I.: A review of active vibration and noise suppression of plate-like structures with piezoelectric transducers. J. Intell. Mater. Syst. Struct. 26(14), 1455–1476 (2015). https://doi.org/10.1177/1045389X15585896

    Article  Google Scholar 

  2. Wang, X., Zhou, J., Song, J., Liu, J., Xu, N., Wang, Z.L.: Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6(14), 2768–2772 (2006). https://doi.org/10.1021/nl061802g

    Article  Google Scholar 

  3. Koconis, D.B., Kollar, L.P., Springer, G.S.: Shape control of composite plates and shells with embedded actuators. II. Desired shape specified. J. Compos. Mater. 28(3), 262–285 (1994). https://doi.org/10.1177/002199839402800305

    Article  Google Scholar 

  4. Kim, H.S., Kim, J.-H., Kim, J.: A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 12(6), 1129–1141 (2011). https://doi.org/10.1007/s12541-011-0151-3

    Article  Google Scholar 

  5. Zhang, X., Takezawa, A., Kang, Z.: Topology optimization of piezoelectric smart structures for minimum energy consumption under active control. Struct. Multidiscip. Optim. 58(1), 185–199 (2018). https://doi.org/10.1007/s00158-017-1886-y

    Article  MathSciNet  Google Scholar 

  6. Molter, A., Fonseca, J.S.O., Fernandez, LdS: Simultaneous topology optimization of structure and piezoelectric actuators distribution. Appl. Math. Model. 40(11), 5576–5588 (2016). https://doi.org/10.1016/j.apm.2016.01.023

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, C., Ding, Y., Gu, G., Zhu, L.: Damping control of piezo-actuated nanopositioning stages with recursive delayed position feedback. IEEE/ASME Trans. Mechatron. 22(2), 855–864 (2017). https://doi.org/10.1109/TMECH.2016.2639584

    Article  Google Scholar 

  8. Bendsoe, M., Sigmund, O.: Topology Optimization-Theory, Methods and Applications. Springer, Berlin (2003)

    MATH  Google Scholar 

  9. Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988). https://doi.org/10.1016/0045-7825(88)90086-2

    Article  MathSciNet  MATH  Google Scholar 

  10. Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Comput. Struct. 49(5), 885–896 (1993). https://doi.org/10.1016/0045-7949(93)90035-C

    Article  Google Scholar 

  11. Bendsøe, M.P., Sigmund, O.: Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69(11), 635–654 (1999). https://doi.org/10.1007/s004190050248

    Article  MATH  Google Scholar 

  12. Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192(1), 227–246 (2003). https://doi.org/10.1016/S0045-7825(02)00559-5

    Article  MathSciNet  MATH  Google Scholar 

  13. He, Z.C., Zhang, G.Y., Deng, L., Li, E., Liu, G.R.: Topology optimization using node-based smoothed finite element method. Int. J. Appl. Mech. 07(06), 1550085 (2015). https://doi.org/10.1142/S1758825115500854

    Article  Google Scholar 

  14. Luo, Z., Tong, L., Wang, M.Y., Wang, S.: Shape and topology optimization of compliant mechanisms using a parameterization level set method. J. Comput. Phys. 227(1), 680–705 (2007). https://doi.org/10.1016/j.jcp.2007.08.011

    Article  MathSciNet  MATH  Google Scholar 

  15. Wu, J., Luo, Z., Li, H., Zhang, N.: Level-set topology optimization for mechanical metamaterials under hybrid uncertainties. Comput. Method Appl. Mech. Eng. 319, 414–441 (2017). https://doi.org/10.1016/j.cma.2017.03.002

    Article  MathSciNet  Google Scholar 

  16. Nasser, H., Porn, S., Koutsawa, Y., Giunta, G., Belouettar, S.: Optimal design of a multilayered piezoelectric transducer based on a special unit cell homogenization method. Acta Mech. 227(9), 1837–1847 (2016). https://doi.org/10.1007/s00707-016-1581-x

    Article  MathSciNet  Google Scholar 

  17. Martin, K., Emílio, C.N.S.: Topology optimization of smart structures: design of piezoelectric plate and shell actuators. Smart Mater. Struct. 14(2), 387 (2005)

    Article  Google Scholar 

  18. Ronny, C.C., Emílio, C.N.S., Shinji, N.: Optimum placement of piezoelectric material in piezoactuator design. Smart Mater. Struct. 16(1), 207 (2007)

    Article  Google Scholar 

  19. Zheng, B., Chang, C.-J., Gea, H.C.: Topology optimization of energy harvesting devices using piezoelectric materials. Struct. Multidiscip. Optim. 38(1), 17–23 (2009). https://doi.org/10.1007/s00158-008-0265-0

    Article  Google Scholar 

  20. Kang, Z., Wang, R., Tong, L.: Combined optimization of bi-material structural layout and voltage distribution for in-plane piezoelectric actuation. Comput. Methods Appl. Mech. Eng. 200(15), 1467–1478 (2011). https://doi.org/10.1016/j.cma.2011.01.005

    Article  MathSciNet  MATH  Google Scholar 

  21. Yiqiang, W., Zhen, L., Xiaopeng, Z., Zhan, K.: Topological design of compliant smart structures with embedded movable actuators. Smart Mater. Struct. 23(4), 045024 (2014)

    Article  Google Scholar 

  22. Schuëller, G.I., Jensen, H.A.: Computational methods in optimization considering uncertainties—an overview. Comput. Methods Appl. Mech. Eng. 198(1), 2–13 (2008). https://doi.org/10.1016/j.cma.2008.05.004

    Article  MATH  Google Scholar 

  23. Wang, L., Xiong, C., Wang, X., Liu, G., Shi, Q.: Sequential optimization and fuzzy reliability analysis for multidisciplinary systems. Struct. Multidiscip. Optim. 60(3), 1079–1095 (2019). https://doi.org/10.1007/s00158-019-02258-y

    Article  MathSciNet  Google Scholar 

  24. Ghanem, R., Red-Horse, J.: Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach. Physica D 133(1), 137–144 (1999). https://doi.org/10.1016/S0167-2789(99)00102-5

    Article  MathSciNet  MATH  Google Scholar 

  25. Stefanou, G., Savvas, D., Papadrakakis, M.: Stochastic finite element analysis of composite structures based on mesoscale random fields of material properties. Comput. Methods Appl. Mech. Eng. 326, 319–337 (2017). https://doi.org/10.1016/j.cma.2017.08.002

    Article  MathSciNet  Google Scholar 

  26. Massa, F., Tison, T., Lallemand, B.: A fuzzy procedure for the static design of imprecise structures. Comput. Methods Appl. Mech. Eng. 195(11), 925–941 (2006). https://doi.org/10.1016/j.cma.2005.02.015

    Article  MATH  Google Scholar 

  27. Wang, L., Wang, X., Xia, Y.: Hybrid reliability analysis of structures with multi-source uncertainties. Acta Mech. 225(2), 413–430 (2014). https://doi.org/10.1007/s00707-013-0969-0

    Article  MATH  Google Scholar 

  28. Jiang, C., Zhang, Q.F., Han, X., Qian, Y.H.: A non-probabilistic structural reliability analysis method based on a multidimensional parallelepiped convex model. Acta Mech. 225(2), 383–395 (2014). https://doi.org/10.1007/s00707-013-0975-2

    Article  Google Scholar 

  29. Jiang, C., Liu, N.Y., Ni, B.Y.: A Monte Carlo simulation method for non-random vibration analysis. Acta Mech. 228(9), 2631–2653 (2017). https://doi.org/10.1007/s00707-017-1842-3

    Article  MATH  Google Scholar 

  30. Wang, L., Xia, H., Zhang, X., Lv, Z.: Non-probabilistic reliability-based topology optimization of continuum structures considering local stiffness and strength failure. Comput. Methods Appl. Mech. Eng. 346, 788–809 (2019). https://doi.org/10.1016/j.cma.2018.09.021

    Article  MathSciNet  Google Scholar 

  31. Jiang, C., Zheng, J., Han, X.: Probability-interval hybrid uncertainty analysis for structures with both aleatory and epistemic uncertainties: a review. Struct. Multidiscip. Optim. 57(6), 2485–2502 (2018). https://doi.org/10.1007/s00158-017-1864-4

    Article  Google Scholar 

  32. He, Z.C., Wu, Y., Li, E.: Topology optimization of structure for dynamic properties considering hybrid uncertain parameters. Struct. Multidiscip. Optim. 57(2), 625–638 (2018). https://doi.org/10.1007/s00158-017-1769-2

    Article  MathSciNet  Google Scholar 

  33. Wu, J., Luo, Z., Li, H., Zhang, N.: A new hybrid uncertainty optimization method for structures using orthogonal series expansion. Appl. Math. Model. 45, 474–490 (2017)

    Article  MathSciNet  Google Scholar 

  34. Farrokh, M., Azar, A., Jandaghi, G., Ahmadi, E.: A novel robust fuzzy stochastic programming for closed loop supply chain network design under hybrid uncertainty. Fuzzy Sets Syst. 341, 69–91 (2018). https://doi.org/10.1016/j.fss.2017.03.019

    Article  MathSciNet  MATH  Google Scholar 

  35. Wu, D., Gao, W.: Hybrid uncertain static analysis with random and interval fields. Comput. Methods Appl. Mech. Eng. 315, 222–246 (2017)

    Article  MathSciNet  Google Scholar 

  36. Xia, B., Yu, D.: An interval random perturbation method for structural-acoustic system with hybrid uncertain parameters. Int. J. Numer. Methods Eng. 97(3), 181–206 (2013). https://doi.org/10.1002/nme.4585

    Article  MathSciNet  MATH  Google Scholar 

  37. Xia, B., Yu, D., Han, X., Jiang, C.: Unified response probability distribution analysis of two hybrid uncertain acoustic fields. Comput. Methods Appl. Mech. Eng. 276(9), 20–34 (2014)

    Article  MathSciNet  Google Scholar 

  38. Kharmanda, G., Olhoff, N., Mohamed, A., Lemaire, M.: Reliability-based topology optimization. Struct. Multidiscip. Optim. 26(5), 295–307 (2004)

    Article  Google Scholar 

  39. Kang, Z., Luo, Y.: Non-probabilistic reliability-based topology optimization of geometrically nonlinear structures using convex models. Comput. Methods Appl. Mech. Eng. 198(57), 3228–3238 (2009). https://doi.org/10.1016/j.cma.2009.06.001

    Article  MathSciNet  MATH  Google Scholar 

  40. Zheng, J., Luo, Z., Jiang, C., Ni, B., Wu, J.: Non-probabilistic reliability-based topology optimization with multidimensional parallelepiped convex model. Struct. Multidiscip. Optim. 57(6), 2205–2221 (2018)

    Article  MathSciNet  Google Scholar 

  41. Wang, L., Liu, D., Yang, Y., Hu, J.: Novel methodology of non-probabilistic reliability-based topology optimization (NRBTO) for multi-material layout design via interval and convex mixed uncertainties. Comput. Methods Appl. Mech. Eng. 346, 550–573 (2019). https://doi.org/10.1016/j.cma.2018.11.035

    Article  MathSciNet  Google Scholar 

  42. Jalalpour, M., Tootkaboni, M.: An efficient approach to reliability-based topology optimization for continua under material uncertainty. Struct. Multidiscip. Optim. 53(4), 759–772 (2016)

    Article  MathSciNet  Google Scholar 

  43. Wang, L., Liu, D., Yang, Y., Wang, X., Qiu, Z.: A novel method of non-probabilistic reliability-based topology optimization corresponding to continuum structures with unknown but bounded uncertainties. Comput. Methods Appl. Mech. Eng. 326, 573–595 (2017). https://doi.org/10.1016/j.cma.2017.08.023

    Article  MathSciNet  Google Scholar 

  44. Dunning, P.D., Kim, H.A.: Robust topology optimization: minimization of expected and variance of compliance. AIAA J. 51(13), 2656–2664 (2013). https://doi.org/10.2514/1.J052183

    Article  Google Scholar 

  45. Jansen, M., Lombaert, G., Diehl, M., Lazarov, B.S., Sigmund, O., Schevenels, M.: Robust topology optimization accounting for misplacement of material. Struct. Multidiscip. Optim. 47(3), 317–333 (2013). https://doi.org/10.1007/s00158-012-0835-z

    Article  MathSciNet  MATH  Google Scholar 

  46. Wu, J., Gao, J., Luo, Z., Brown, T.: Robust topology optimization for structures under interval uncertainty. Adv. Eng. Softw. 99, 36–48 (2016). https://doi.org/10.1016/j.advengsoft.2016.05.002

    Article  Google Scholar 

  47. Chen, N., Yu, D., Xia, B., Ma, Z.: Topology optimization of structures with interval random parameters. Comput. Methods Appl. Mech. Eng. 307, 300–315 (2016)

    Article  MathSciNet  Google Scholar 

  48. Zheng, J., Luo, Z., Jiang, C., Gao, J.: Robust topology optimization for concurrent design of dynamic structures under hybrid uncertainties. Mech. Syst. Signal Process. 120, 540–559 (2019)

    Article  Google Scholar 

  49. Haug, E., Choi, K., Komkov, V.: Design Sensitivity Analysis of Structural Systems. Academic Press, Cambridge (1986)

    MATH  Google Scholar 

  50. Sigmund, O., Petersson, J.: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim. 16(1), 68–75 (1998). https://doi.org/10.1007/BF01214002

    Article  Google Scholar 

  51. Huang, X., Xie, Y.M.: Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem. Anal. Des. 43(16), 1039–1049 (2007). https://doi.org/10.1016/j.finel.2007.06.006

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2016YFB0100903-2, the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51621004), the Opening Project of the Guangxi Key Laboratory of Automobile Components and Vehicle Technology of Guangxi University of Science and Technology (No. 2017GKLACVTKF01) and the Opening Project of the Hunan Provincial Key Laboratory of Vehicle Power and Transmission System (Nos. VPTS-2019-02, VPTS-2019-03 and VPTS-2019-06), Natural Science Foundation of Hunan Province (Grant No. 2017JJ3030). In addition, the authors thank the reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z.C., Jiang, H.X., Wu, Y. et al. Robust topological design of actuator-coupled structures with hybrid uncertainties. Acta Mech 231, 1621–1638 (2020). https://doi.org/10.1007/s00707-019-02608-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02608-3

Navigation