Skip to main content
Log in

Robust topology optimization accounting for misplacement of material

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The use of topology optimization for structural design often leads to slender structures. Slender structures are sensitive to geometric imperfections such as the misplacement or misalignment of material. The present paper therefore proposes a robust approach to topology optimization taking into account this type of geometric imperfections. A density filter based approach is followed, and translations of material are obtained by adding a small perturbation to the center of the filter kernel. The spatial variation of the geometric imperfections is modeled by means of a vector valued random field. The random field is conditioned in order to incorporate supports in the design where no misplacement of material occurs. In the robust optimization problem, the objective function is defined as a weighted sum of the mean value and the standard deviation of the performance of the structure under uncertainty. A sampling method is used to estimate these statistics during the optimization process. The proposed method is successfully applied to three example problems: the minimum compliance design of a slender column-like structure and a cantilever beam and a compliant mechanism design. An extensive Monte Carlo simulation is used to show that the obtained topologies are more robust with respect to geometric imperfections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abramowitz M, Stegun I (1970) Handbook of mathematical functions, 9th edn. Dover Publications, New York

    Google Scholar 

  • Andreassen E, Clausen A, Schevenels M, Lazarov B, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidisc Optim 43:1–16

    Article  Google Scholar 

  • Asadpoure A, Tootkaboni M, Guest J (2011) Robust topology optimization of structures with uncertainties in stiffness—application to truss structures. Comput Struct 89(11–12):1131–1141

    Article  Google Scholar 

  • Baitsch M, Hartmann D (2006) Optimization of slender structures considering geometrical imperfections. Inverse Probl Sci Eng 14(6):623–637

    Article  MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (1997) Robust truss topology design via semidefinite programming. SIAM J Optim 7(4):991–1016

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe M (1989) Optimal shape design as a material distribution problem. Struct Multidisc Optim 1:193–202

    Article  Google Scholar 

  • Bendsøe M, Sigmund O (2004) Topology optimization: theory, methods and applications, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Beyer H, Sendhoff B (2007) Robust optimization—a comprehensive survey. Comput Methods Appl Mech Eng 196(33–34):3190–3218

    Article  MathSciNet  MATH  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    Article  MathSciNet  MATH  Google Scholar 

  • Brittain K, Silva M, Tortorelli D (2011) Minmax topology optimization. Struct Multidisc Optim 45:1–12

    MathSciNet  Google Scholar 

  • Bruns T, Tortorelli D (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

    Article  MATH  Google Scholar 

  • Chen S, Chen W (2011) A new level-set based approach to shape and topology optimization under geometric uncertainty. Struct Multidisc Optim 44:1–18

    Article  Google Scholar 

  • Chen S, Chen W, Lee S (2010) Level set based robust shape and topology optimization under random field uncertainties. Struct Multidisc Optim 41:507–524

    Article  MathSciNet  Google Scholar 

  • Ditlevsen O (1996) Dimension reduction and discretization in stochastic problems by regression method. In: Casciati F, Roberts J (eds) Mathematical models for structural reliability analysis, pp 51–138

  • Eurocode 3 (1994) Design of steel structures. European Commitee for Standardization

  • Ghanem R, Spanos P (1991) Stochastic finite elements: a spectral approach. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Guest J, Igusa T (2008) Structural optimization under uncertain loads and nodal locations. Comput Methods Appl Mech Eng 198(1):116–124

    Article  MathSciNet  MATH  Google Scholar 

  • Guest J, Prevost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254

    Article  MathSciNet  MATH  Google Scholar 

  • Guest J, Asadpoure A, Ha SH (2011) Eliminating beta-continuation from heaviside projection and density filter algorithms. Struct Multidisc Optim 44:443–453

    Article  MathSciNet  Google Scholar 

  • Jalalpour M, Igusa T, Guest J (2011) Optimal design of trusses with geometric imperfections: accounting for global instability. Int J Solids Struct 48(21):3011–3019

    Article  Google Scholar 

  • JCSS (1999) JCSS probabilistic model code part 3: resistance models. Joint Comittee on Structural Safety

  • Kogiso N, Ahn W, Nishiwaki S, Izui K, Yoshimura M (2008) Robust topology optimization for compliant mechanisms considering uncertainty of applied loads. J Adv Mech Des Syst Manuf 2(1):96–107

    Article  Google Scholar 

  • Kolanek K, Jendo S (2008) Random field models of geometrically imperfect structures with “clamped” boundary conditions. Probab Eng Mech 23(2–3):219–226

    Article  Google Scholar 

  • Kolmogorov A (1956) Foundations of the theory of probability, 2nd edn. Chelsea Publishing Company, New York

    MATH  Google Scholar 

  • Lazarov B, Schevenels M, Sigmund O (2011) Robust design of large-displacement compliant mechanisms. Mech Sci 2(2):175–182

    Article  Google Scholar 

  • Lazarov B, Schevenels M, Sigmund O (2012) Topology optimization using perturbation techniques taking into account geometric uncertainties. Int J Numer Methods Eng 90(11):1321‒1336

    Article  MATH  Google Scholar 

  • Li C, Der Kiureghian A (1993) Optimal discretization of random fields. J Eng Mech 119(6):1136–1154

    Article  Google Scholar 

  • Rozvany G, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Multidisc Optim 4:250–252

    Article  Google Scholar 

  • Schevenels M, Lazarov B, Sigmund O (2011) Robust topology optimization accounting for spatially varying manufacturing errors. Comput Methods Appl Mech Eng 200(49–52):3613–3627

    Article  MATH  Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524

    Article  Google Scholar 

  • Sigmund O (2007) Morphology–based black and white filters for topology optimization. Struct Multidisc Optim 33(4–5):401–424

    Article  Google Scholar 

  • Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mech Sin 25:227–239

    Article  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multidisc Optim 16:68–75

    Article  Google Scholar 

  • Smolyak S (1963) Quadrature and interpolation formulas for tensor products of certain classes of functions. Sov Math, Dokl 4:240–243

    Google Scholar 

  • Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 93(7):964–979

    Article  Google Scholar 

  • Sudret B, Der Kiureghian A (2000) Stochastic finite element methods and reliability—a state-of-the-art report. Report UCB/SEMM-2000/08, Department of Civil & Environmental Engineering, University of California, Berkeley

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Tootkaboni M, Asadpoure A, Guest J (2012) Topology optimization of continuum structures under uncertainty—a polynomial chaos approach. Comput Methods Appl Mech Eng 201–204(1):263–275

    Article  MathSciNet  Google Scholar 

  • Wang F, Jensen J, Sigmund O (2011a) Robust topology optimization of photonic crystal waveguides with tailored dispersion properties. J Opt Soc Am B, Opt Phys 28(3):387–397

    Article  Google Scholar 

  • Wang F, Lazarov B, Sigmund O (2011b) On projection methods, convergence and robust formulations in topology optimization. Struct Multidisc Optim 43:767–784

    Article  Google Scholar 

  • Xiu D, Hesthaven JS (2005) High-order collocation methods for differential equations with random inputs. SIAM J Sci Comput 27(3):1118–1139

    Article  MathSciNet  MATH  Google Scholar 

  • Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on heaviside functions. Struct Multidisc Optim 41:495–505

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research presented in this paper has been performed within the framework of the KU Leuven - BOF PFV/10/002 OPTEC - Optimization in Engineering Center and the NextTop project sponsored by the Villum Foundation. We also acknowledge support via KUL GOA/10/09 MaNet, FWO G.0320.08 (convex MPC), G.0558.08 (Robust MHE), G.0377.09 (Mechatronics MPC), IWT SBO LeCoPro, IUAP P6/04 DYSCO, FP7-EMBOCON (ICT-248940), FP7-SADCO (MC ITN-264735), ERC HIGHWIND (259 166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miche Jansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, M., Lombaert, G., Diehl, M. et al. Robust topology optimization accounting for misplacement of material. Struct Multidisc Optim 47, 317–333 (2013). https://doi.org/10.1007/s00158-012-0835-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-012-0835-z

Keywords

Navigation