Skip to main content
Log in

Wave boundary control method for vibration suppression of large net structures

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Large net structures used in engineering can easily get into vibration under external excitations; however, the corresponding vibration control strategy still remains challenging. In this paper, a wave boundary control (WBC) strategy is proposed for the vibration suppression of large net structures. The stability of the controlled structures is confirmed by using inverse Fourier transform, transfer function analysis, and numerical simulation. When WBC controllers are set at all boundaries and excitations come from the boundaries, dynamic responses for all the strings of the net structures can quickly reduce to zero without any residual vibration. The effects of different observations, controls, and distributions of sensors on the control laws are discussed. As an application, a method for reducing the number of controllers for large net structures is finally proposed. The research provides theoretical guidance for vibration control of large net structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Tibert, G.: Deployable Tensegrity Structures for Space Applications. Royal Institute of Technology, Stockholm (2002)

    Google Scholar 

  2. Zhang, Y., Li, N., Yang, G., Ru, W.: Dynamic analysis of the deployment for mesh reflector deployable antennas with the cable-net structure. Acta Astronaut. 131, 182–189 (2017)

    Article  Google Scholar 

  3. Zhang, W., Liu, T., Xi, A., Wang, Y.N.: Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes. J. Sound Vib. 423, 65–99 (2018)

    Article  Google Scholar 

  4. Hu, H., Tian, Q., Zhang, W., Jin, D., Hu, G., Song, Y.: Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes. Adv. Mech. 43, 390–414 (2013)

    Google Scholar 

  5. Fuller, C.R., Elliott, S.J., Nelson, P.A.: Active Control of Vibration. Academic Press, London (1996)

    Book  Google Scholar 

  6. Inman, D.J.: Control of Vibrations. Wiley, New York (2006)

    Book  Google Scholar 

  7. Moshrefi-Torbati, M., Forrester, J.A., Forrester, A.I.J., Keane, A.J., Brennan, M.J., Elliott, S.J.: Novel active and passive anti-vibration mountings. J. Sound Vib. 331, 1532–1541 (2012)

    Article  Google Scholar 

  8. Gawronski, W.K.: Advanced Structural Dynamics and Active Control of Structures. Springer, New York (1998)

    Book  Google Scholar 

  9. Wang, Z., Li, T.: Optimal Piezoelectric sensor/actuator placement of cable net structures using H2-norm measures. J. Vib. Control. 20, 1257–1268 (2014)

    Article  MathSciNet  Google Scholar 

  10. Liu, F., Jin, D., Wen, H.: Optimal vibration control of curved beams using distributed parameter models. J. Sound Vib. 384, 15–27 (2016)

    Article  Google Scholar 

  11. Mace, B.R.: Wave reflection and transmission in beams. J. Sound Vib. 97, 237–246 (1984)

    Article  Google Scholar 

  12. Mace, B.R.: Active control of flexural vibrations. J. Sound Vib. 114, 253–270 (1987)

    Article  Google Scholar 

  13. Flotow, A.H.Von: Traveling wave control for large spacecraft structures. J. Guid. Control Dyn. 9, 462–468 (1986)

    Article  Google Scholar 

  14. Tanaka, N., Kikushima, Y.: Active wave control of a flexible beam (Proposition of the active sink method). JSME Int. J. 34, 159–167 (1991)

    Google Scholar 

  15. Tanaka, N., Kikushima, Y.: Flexural wave control of flexible beam: fundamental characteristics of an active sink system and its verification. Trans. Jpn. Soc. Mech. Eng. Ser C 56(530), 2575–2582 (1990)

  16. Spadoni, A., Ruzzene, M., Cunefare, K.: Vibration and wave propagation control of plates with periodic arrays of shunted piezoelectric patches. J. Intell. Mater. Syst. Struct. 20, 979–990 (2009)

    Article  Google Scholar 

  17. Wu, Z.J., Li, F.M.: Spectral element method and its application in analysing the vibration band gap properties of two-dimensional square lattices. J. Vib. Control. 22, 710–721 (2016)

    Article  MathSciNet  Google Scholar 

  18. Fujii, H.A., Watanabe, T., Taira, W., Trivailo, P.: An analysis of vibration and wave-absorbing control of tether systems. AIAA Guidance, Navigation, and Control Conference and Exhibit. AIAA2001-4033 (2001)

  19. Wang, Z., Li, T.: Linear dynamic analysis and active control of space prestressed taut cable net structures using wave scattering method. Struct. Control Heal. Monit. 23, 783–798 (2016)

    Article  Google Scholar 

  20. Meirovitch, L., Baruh, H.: On the problem of observation spillover in self-adjoint distributed-parameter systems. J. Optim. Theory Appl. 39, 269–291 (1983)

    Article  MathSciNet  Google Scholar 

  21. Logan, J.D.: Applied Mathematics. Wiley, New Jersey (2006)

    MATH  Google Scholar 

  22. O’Connor, W.J., Zhu, M.: Boundary-controlled travelling and standing waves in cascaded lumped systems. Mech. Syst. Signal Process. 39, 119–128 (2013)

    Article  Google Scholar 

  23. Habibi, H., O’Connor, W.J.: Wave-based control of planar motion of beam-like mass-spring arrays. Wave Motion. 72, 317–330 (2017)

    Article  MathSciNet  Google Scholar 

  24. Kreuzer, E., Steidl, M.: Controlling torsional vibrations of drill strings via decomposition of traveling waves. Arch. Appl. Mech. 82, 515–531 (2012)

    Article  Google Scholar 

  25. Rad, H.K., Salarieh, H., Alasty, A., Vatankhah, R.: Boundary control of flexible satellite vibration in planar motion. J. Sound Vib. 432, 549–568 (2018)

    Article  Google Scholar 

  26. Krstic, M., Smyshlyaev, A.: Boundary Control of PDEs: A Course on Backstep. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  27. Wang, J., Tang, S., Pi, Y., Krstic, M.: Automatica Exponential regulation of the anti-collocatedly disturbed cage in a wave PDE-modeled ascending cable elevator. Automatica 95, 122–136 (2018)

    Article  MathSciNet  Google Scholar 

  28. Wang, J., Pi, Y., Krstic, M.: Automatica Balancing and suppression of oscillations of tension and cage in dual-cable mining elevators. Automatica 98, 223–238 (2018)

    Article  MathSciNet  Google Scholar 

  29. Zhao, Z., Wang, X., Zhang, C., Liu, Z., Yang, J.: Neural network based boundary control of a vibrating string system with input deadzone. Neurocomputing 275, 1021–1027 (2018)

    Article  Google Scholar 

  30. Zhao, Z., Shi, J., Lan, X., Wang, X., Yang, J.: Adaptive neural network control of a flexible string system with non-symmetric dead-zone and output constraint. Neurocomputing 283, 1–8 (2018)

    Article  Google Scholar 

  31. Zhao, Z., Liu, Z., Li, Z., Wang, N., Yang, J.: Control design for a vibrating flexible marine riser system. J. Frankl. Inst. 354, 8117–8133 (2017)

    Article  MathSciNet  Google Scholar 

  32. Zhao, Z., He, X., Ren, Z., Wen, G.: Boundary adaptive robust control of a flexible riser system with input nonlinearities. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2882734

    Article  Google Scholar 

  33. Zhao, Z., He, X., Member, S., Ren, Z., Wen, G.: Output feedback stabilization for an axially moving system. IEEE Trans. Syst. Man, Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2882822

  34. Liu, Y., Zhang, K., Zhang, W.Z., Meng, X.Y.: Wave-based vibration control of large cable net structures. Wave Motion. 77, 139–155 (2018)

    Article  MathSciNet  Google Scholar 

  35. Guo, B., Shao, Z.: Stabilization of an abstract second order system with application to wave equations under non-collocated control and observations. Syst. Control Lett. 58, 334–341 (2009)

    Article  MathSciNet  Google Scholar 

  36. Tan, C.A., Ying, S.: Active wave control of the axially moving string: theory and experiment. J. Sound Vib. 236, 861–880 (2000)

    Article  Google Scholar 

  37. Zingoni, A.: An efficient computational scheme for the vibration analysis of high tension cable nets. J. Sound Vib. 189, 55–75 (1996)

    Article  Google Scholar 

  38. Elmore, W.C., Heald, M.a, Roelofs, L.: Physics of Waves. McGraw-Hill, Cambridge (1969)

    Google Scholar 

  39. Xu, X., Zuo, S., Zhang, K., Hu, G.: Wave-based transfer matrix method for dynamic response of large net structures. J. Sound Vib. 433, 265–286 (2018)

    Article  Google Scholar 

  40. Doyle, J.F.: Wave Propagation in Structures. Springer, Berlin (1989)

    Book  Google Scholar 

  41. Kovacic, I., Brennan, M.J.: On the use of two classical series expansion methods to determine the vibration of harmonically excited pure cubic oscillators. Phys. Lett. A. 372, 4028–4032 (2008)

    Article  Google Scholar 

  42. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (2010)

    Article  MathSciNet  Google Scholar 

  43. Wang, L., Dongxu, L., Jianping, J.: General mesh configuration design approach for large cable-network antenna reflectors. J. Struct. Eng. 140, 04013051 (2014)

    Article  Google Scholar 

  44. Liu, W., Lia, D.X., Jiang, J.P.: Mesh topological form design and geometrical configuration generation for cable-network antenna reflector structures. Struct. Eng. Mech. 45, 407–418 (2013)

    Article  Google Scholar 

  45. Schek, H.J.: The force density method for form finding and computation of general networks. Comput. Methods Appl. Mech. Eng. 3, 115–134 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Xinwei Xu for the help in the theoretical work. This work was supported by the National Natural Science Foundation of China [Grant Nos. 11290153 and 11672037].

Author contributions KZ proposed the key idea of this paper. SLZ and KZ developed the analytical method and carried out the numerical computation. YL assisted with the building of the numerical program. GKH assisted with discussing the results. SLZ, KZ, and GKH contributed to the writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Wave boundary control laws for the model in Fig. 3a:

$$\begin{aligned} U_C =\frac{U_1 }{2G^{2}},\quad U_D =\frac{U_1 }{2G^{2}}. \end{aligned}$$
(A.1)

The traveling waves at the boundary points can be expressed as

$$\begin{aligned} \left\{ {\begin{array}{l} u_{A1} =\frac{U_1 (1-2G^{2})}{2-2G^{2}},\quad u_{A2} =\frac{U_1 }{2-2G^{2}}, \\ u_{B1} =\frac{U_1 }{2-2G^{2}},\quad u_{B1} =-\frac{U_1 }{2-2G^{2}}, \\ u_{c1} =0,\quad u_{C2} =\frac{U_1 }{2G^{2}}, \\ u_{D1} =0,\quad u_{D2} =\frac{U_1 }{2G^{2}}. \\ \end{array}} \right. \end{aligned}$$
(A.2)

Thus, the frequency responses for Fig. 3a can be obtained as

$$\begin{aligned} \left\{ {\begin{array}{l} V_1 (x,\omega )=\frac{\hbox {e}^{-ikx}(1-2G^{2}+\hbox {e}^{2ikx})U_1 }{2(1-G^{2})}, \\ V_2 (x,\omega )=\frac{\hbox {e}^{-ikx}(1-\hbox {e}^{2ikx})U_1 }{2(1-G^{2})}, \\ V_3 (x,\omega )=\frac{\hbox {e}^{ikx}U_1 }{2G^{2}},\quad V_4 (x,\omega )=\frac{\hbox {e}^{ikx}U_1 }{2G^{2}}, \\ \end{array}} \right. \end{aligned}$$
(A.3)
$$\begin{aligned} V_3 (x,t)=V_4 (x,t)=\frac{1}{2}U_1 \left( {t-2\frac{l}{c}+\frac{x}{c}} \right) . \end{aligned}$$
(A.4)

Similarly, for the three controllers model in Fig. 4a, the control laws are

$$\begin{aligned} U_B =\frac{U_1 }{2G^{2}-1},\quad U_C =\frac{U_1 }{2G^{2}-1},\quad U_D =\frac{U_1 }{2G^{2}-1}. \end{aligned}$$
(A.5)

The traveling waves at boundary points for Fig. 4a can be expressed as

$$\begin{aligned} \left\{ {\begin{array}{l} u_{A1} =-\frac{2G^{2}U_1 }{1-2G^{2}},\quad u_{A2} =\frac{U_1 }{1-2G^{2}}, \\ u_{B1} =0,\quad u_{B1} =-\frac{U_1 }{1-2G^{2}}, \\ u_{c1} =0,\quad u_{C2} =-\frac{U_1 }{1-2G^{2}}, \\ u_{D1} =0,\quad u_{D2} =-\frac{U_1 }{1-2G^{2}}, \\ \end{array}} \right. \end{aligned}$$
(A.6)

The time responses for the three controllers model in Fig. 4a are as follows:

$$\begin{aligned} \left\{ {\begin{array}{l} V_1 (x,t)=-\mathop \sum \limits _{n=0}^\infty {\frac{1}{2^{n+1}}} U_1 \left( {t-\frac{2\left( {n+1} \right) l}{c}+\frac{x}{c}} \right) +\mathop \sum \limits _{n=0}^\infty {\frac{1}{2^{n}}U_1 \left( {t-\frac{2nl}{c}-\frac{x}{c}} \right) }, \\ V_2 (x,t)=V_3 (x,t)=V_4 (x,t)=\mathop \sum \limits _{n=0}^\infty {\frac{1}{2^{n+1}}} U_1 \left( {t-\frac{2\left( {n+1} \right) l}{c}+\frac{x}{c}} \right) . \\ \end{array}} \right. \end{aligned}$$
(A.7)

The time responses for the four controllers model in Fig. 4b are as follows:

$$\begin{aligned} \left\{ {\begin{array}{l} V_1 (x,t)=-\frac{i}{4kT}\left[ f_1 \left( {t-\frac{3l}{2c}+\frac{x}{c}} \right) -2f_1 \left( {t-\frac{l}{2c}+\frac{x}{c}} \right) \right] , \\ V_2 (x,t)=V_3 (x,t)=V_4 (x,t)=\frac{i}{4kT}f_1 \left( {t-\frac{3l}{2c}+\frac{x}{c}} \right) , \\ \end{array}} \right. \end{aligned}$$
(A.8)
$$\begin{aligned} \left\{ {\begin{array}{l} \alpha =(8+40G^{2}+97G^{4}+130G^{6}+96G^{8}+32G^{10}), \\ \beta =8+32G^{2}+53G^{4}+44G^{6}+16G^{8}, \\ \gamma =8+36G^{2}+60G^{4}+48G^{6}+16G^{8}, \\ \eta =8G+20G^{3}+20G^{5}+8G^{7}, \\ \lambda =12G+35G^{3}+38G^{5}+16G^{7}, \\ \psi =4G+16G^{3}+20G^{5}+8G^{7}. \\ \end{array}} \right. \end{aligned}$$
(A.9)

Appendix B

The total energy of the net structure is the sum of the kinetic and the energy of each string.

The energy of the string is as follows:

$$\begin{aligned} E(t)=\frac{1}{2}\int _0^L {(\rho \left| {V_t (x,t)} \right| ^{2}+T\left| {V_x (x,t)} \right| ^{2})} \hbox {d}x. \end{aligned}$$
(B.1)

The space interval [0, L] is the length of the string and discretized into m equally spaced panels. By applying the trapezoidal rule to each panel, the approximation to the energy of this string (Eq. (B.1)) at time \(t_{q}\) becomes

$$\begin{aligned} E(t_q )=\frac{1}{2}\sum _{p=0}^{(m-1)L} {\int _{p \Delta x}^{(p +1)\Delta x} {(\rho \left| {V_t (x,t_q )} \right| ^{2}+T\left| {V_x (x,t_q )} \right| ^{2})} \hbox {d}x}. \end{aligned}$$
(B.2)

After a summation of \(E(t_q )\) for all strings, we can obtain the total energy of the net structure at time \(t_{q}\).

Appendix C

The expression of the displacement of an arbitrary point on the string (see Fig. 1 or Fig. 8b) corresponding to different observations is shown in Table 2.

Table 2 Displacement of an arbitrary point on the string corresponding to different observations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, S., Liu, Y., Zhang, K. et al. Wave boundary control method for vibration suppression of large net structures. Acta Mech 230, 3439–3456 (2019). https://doi.org/10.1007/s00707-019-02464-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02464-1

Navigation