Skip to main content
Log in

Progressive damage investigation of 2.5D woven composites under quasi-static tension

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the progressive damage of 2.5D layer-to-layer angle-interlock woven composites under quasi-static tension is investigated on a mesoscopic scale. A damage model is developed, considering the fiber damage, matrix crack and interfacial damage. The representative volume cell is established to predict the strength of the 2.5D woven composites. The damage initiation and propagation criteria are based on the Puck criterion for the fiber yarn, the paraboloidal yield criterion for the matrix and the quadratic stress criterion for the fiber yarn–matrix interface. The tensile stress–strain curve and damage evolution law of the woven composites are predicted. Some typical experiments are carried out to verify this numerical model. The damage behavior of the composites, where the variation of the interfacial fracture energy is taken into consideration, is simulated to study the influence of the interface properties on the strength. The results show that the fiber yarn–matrix interface damage characteristics play an important role in tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dalmaz, A., Reynaud, P., Rouby, D., Fantozzi, G., Abbe, F.: Mechanical behavior and damage development during cyclic fatigue at high-temperature of a 2.5D carbon/SiC composite. Compos. Sci. Technol. 58, 693–699 (1998)

    Article  Google Scholar 

  2. Boitier, G., Vicens, J., Chermant, J.L.: Understanding the creep behavior of a 2.5D Cf–SiC composite-I. Morphology and microstructure of the as-received material. Mater. Sci. Eng. A(279), 73–80 (2000)

    Article  Google Scholar 

  3. Boitier, G., Vicens, J., Chermant, J.L.: Understanding the creep behavior of a 2.5D Cf–SiC composite. III. From mesoscale to nanoscale microstructural and morphological investigation towards creep mechanism. Mater. Sci. Eng. A(313), 53–63 (2001)

    Article  Google Scholar 

  4. Ma, J., Xu, Y., Zhang, L., Cheng, L., Nie, J., Dong, N.: Microstructure characterization and tensile behavior of 2.5D C/SiC composites fabricated by chemical vapor infiltration. Scr. Mater. 54(11), 1967–1971 (2006). https://doi.org/10.1016/j.scriptamat.2006.01.047

    Article  Google Scholar 

  5. Dong, W.F., Xiao, J., Li, Y.: Finite element analysis of the tensile properties of 2.5D braided composites. Mater. Sci. Eng. A 457(1–2), 199–204 (2007). https://doi.org/10.1016/j.msea.2006.12.032

    Article  Google Scholar 

  6. Kong, C., Sun, Z., Niu, X., Song, Y.: Analytical model of elastic modulus and coefficient of thermal expansion for 2.5D C/SiC composite. J. Wuhan Univ. Technol. Mater. Sci. Ed. 28(3), 494–499 (2013). https://doi.org/10.1007/s11595-013-0719-0

    Article  Google Scholar 

  7. Lu, Z., Zhou, Y., Yang, Z., Liu, Q.: Multi-scale finite element analysis of 2.5D woven fabric composites under on-axis and off-axis tension. Comput. Mater. Sci. 79, 485–494 (2013). https://doi.org/10.1016/j.commatsci.2013.07.003

    Article  Google Scholar 

  8. Sun, B., Gu, B., Ding, X.: Compressive behavior of 3-D angle-interlock woven fabric composites at various strain rates. Polym. Test. 24(4), 447–454 (2005). https://doi.org/10.1016/j.polymertesting.2005.01.005

    Article  Google Scholar 

  9. Dong, K., Liu, K., Pan, L.J., Gu, B.H., Sun, B.Z.: Experimental and numerical investigation on the thermal conduction properties of 2.5D angle-interlock woven composites. Compos. Struct. 154, 319–333 (2016). https://doi.org/10.1016/j.compstruct.2016.07.071

    Article  Google Scholar 

  10. Guo-dong, F., Jun, L., Bao-lai, W.: Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension. Compos. Struct. 89(1), 126–133 (2009). https://doi.org/10.1016/j.compstruct.2008.07.016

    Article  Google Scholar 

  11. Zhong, S., Guo, L., liu, G., Lu, H., Zeng, T.: A continuum damage model for three-dimensional woven composites and finite element implementation. Compos. Struct. 128, 1–9 (2015). https://doi.org/10.1016/j.compstruct.2015.03.030

    Article  Google Scholar 

  12. Zhong, S., Guo, L., Liu, G., Zhang, L., Pan, S.: A random waveness model for the stiffness and strength evaluation of 3D woven composites. Compos. Struct. 152, 1024–1032 (2016). https://doi.org/10.1016/j.compstruct.2016.06.051

    Article  Google Scholar 

  13. Sun, Z., Kong, C., Niu, X., Song, Y., Wang, X.: Optimization and reliability analysis of 2.5D C/SiC composites turbine stator vane. Appl. Compos. Mater. 21(5), 789–803 (2014). https://doi.org/10.1007/s10443-013-9374-z

    Article  Google Scholar 

  14. Song, J., Wen, W., Cui, H., Zhang, H., Xu, Y.: Finite element analysis of 2.5D woven composites, part II: damage behavior simulation and strength prediction. Appl. Compos. Mater. 23(1), 45–69 (2015). https://doi.org/10.1007/s10443-015-9449-0

    Article  Google Scholar 

  15. Rahali, Y., Assidi, M., Goda, I., Zghal, A., Ganghoffer, J.F.: Computation of the effective mechanical properties including nonclassical moduli of 2.5D and 3D interlocks by micromechanical approaches. Compos. Part B Eng. 98, 194–212 (2016). https://doi.org/10.1016/j.compositesb.2016.04.066

    Article  Google Scholar 

  16. Ismar, H., Schröter, F., Streicher, F.: Influence of the fiber volume fraction and the fiber Weibull modul on the behavior of 2D woven SiC_SiC—a finite element simulation. Acta Mech. 149, 41–54 (2001)

    Article  MATH  Google Scholar 

  17. Shindo, Y., Narita, F., Sato, T.: Analysis of mode II interlaminar fracture and damage behavior in end notched flexure testing of GFRP woven laminates at cryogenic temperatures. Acta Mech. 187(1–4), 231–240 (2006). https://doi.org/10.1007/s00707-006-0357-0

    Article  MATH  Google Scholar 

  18. Fish, J., Filonova, V., Kuznetsov, S.: Micro-inertia effects in nonlinear heterogeneous media. Int. J. Numer. Methods Eng. 91(13), 1406–1426 (2012). https://doi.org/10.1002/nme.4322

    Article  MathSciNet  Google Scholar 

  19. Hashin, Z.: Fatigue failure criteria for unidirectional fiber composites. J. Appl. Mech. 48, 846–852 (1981)

    Article  MATH  Google Scholar 

  20. Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 58, 1045–1067 (1998)

    Article  Google Scholar 

  21. Puck, A., Kopp, J., Knops, M.: Guidelines for the determination of the parameters in Puck’s action plane strength criterion. Compos. Sci. Technol. 62, 371–378 (2002)

    Article  Google Scholar 

  22. Chang, F.-K., Chang, K.-Y.: A progressive damage model for laminated composites containing stress. J. Compos. Mater. 21, 0834–0855 (1987)

    Article  Google Scholar 

  23. Tsai, S.W., Wu, E.M.: A general theory of strength for anisotropic materials. J. Compos. Mater. 5, 58–80 (1971)

    Article  Google Scholar 

  24. Hoffman, O.: The brittle strength of orthotropic materials. Journal of Composite Materials. J. Compos. Mater. 1, 200–206 (1967)

    Article  Google Scholar 

  25. Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 193, 281–297 (1948)

    MathSciNet  MATH  Google Scholar 

  26. Tandon, G.P., Kim, R.Y., Bechel, V.T.: Fiber–matrix interfacial failure characterization using a cruciform-shaped specimen. J. Compos. Mater. 36(23), 2667–2691 (2002). https://doi.org/10.1177/002199802761675575

    Article  Google Scholar 

  27. Zhandarov, S.: Characterization of fiber/matrix interface strength: applicability of different tests, approaches and parameters. Compos. Sci. Technol. 65(1), 149–160 (2005). https://doi.org/10.1016/j.compscitech.2004.07.003

    Article  Google Scholar 

  28. Yang, L., Thomason, J.L.: Interface strength in glass fibre-polypropylene measured using the fibre pull-out and microbond methods. Compos. Part A Appl. Sci. Manuf. 41(9), 1077–1083 (2010). https://doi.org/10.1016/j.compositesa.2009.10.005

    Article  Google Scholar 

  29. Ogihara, S., Koyanagi, J.: Investigation of combined stress state failure criterion for glass fiber/epoxy interface by the cruciform specimen method. Compos. Sci. Technol. 70(1), 143–150 (2010). https://doi.org/10.1016/j.compscitech.2009.10.002

    Article  Google Scholar 

  30. Catalanotti, G., Camanho, P.P., Marques, A.T.: Three-dimensional failure criteria for fiber-reinforced laminates. Compos. Struct. 95, 63–79 (2013). https://doi.org/10.1016/j.compstruct.2012.07.016

    Article  Google Scholar 

  31. Koyanagi, J., Hatta, H., Kotani, M., Kawada, H.: A comprehensive model for determining tensile strengths of various unidirectional composites. J. Compos. Mater. 43(18), 1901–1914 (2009). https://doi.org/10.1177/0021998309341847

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Licheng Guo, Li Zhang or Shidong Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Guo, L., Liu, G. et al. Progressive damage investigation of 2.5D woven composites under quasi-static tension. Acta Mech 230, 1323–1336 (2019). https://doi.org/10.1007/s00707-017-2024-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2024-z

Navigation