Skip to main content
Log in

Fatigue Hysteresis Behavior of 2.5D Woven C/SiC Composites: Theory and Experiments

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

This paper presents an intriguing fatigue hysteresis behavior of 2.5 dimensional woven C/SiC composites via the integration tool of advanced experimental techniques with a multiscale theoretical model. Tension-tension fatigue experiment has been carried out to predict the fatigue hysteresis properties of 2.5D woven C/SiC composite at room temperature, accompanied with the fracture of specimens to investigate the mechanism of fatigue damage. Meanwhile, a multiscale fatigue model of 2.5D woven C/SiC composites, which encompasses a micro-scale model of fiber/matrix/porosity in fiber tows and a macro-scale model of unit-cell, has been proposed to provide a reliable validation of the experimental results based on fiber damages resulting from relative slip motion with respect to matrix at interfaces and the architecture of 2.5D woven C/SiC composites. The predicted hysteresis loop from theoretical model at room temperature holds great agreement with that from tension-tension fatigue experiments. Also, effects of fatigue load, braided structural parameters and material properties at micro scale on fatigue hysteresis behavior have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Boitier, G., Vicens, J., Chermant, J.L.: Understanding the creep behavior of a 2.5D Cf-SiC composite. III. From mesoscale to nanoscale microstructural and morphological investigation towards creep mechanism. Mater. Sci. Eng. A. 313, 53–63 (2001)

    Article  Google Scholar 

  2. Boitier, G., Chermant, J.L., Vicens, J.: Understanding the creep behavior of a 2.5D Cf-SiC composite-I. Morgphology and microstructure of the as-received material. Mater. Sci. Eng. A. 279, 73–80 (2000)

    Article  Google Scholar 

  3. Boitier, G., Chermant, J.L., Vicens, J.: Understanding the creep behavior of a 2.5D Cf-SiC composite-II. Experimental specifications and macroscopic mechanical creep responses. Mater. Sci. Eng. A. 289, 265–275 (2000)

    Article  Google Scholar 

  4. Ma, J., Xu, Y., Zhang, L., Cheng, L., Nie, J., Dong, N.: Microstructure characterization and tensile behavior of 2.5D C/SiC composites fabricated by chemical vapor infiltration. Scr. Mater. 54, 1967–1971 (2006)

    Article  Google Scholar 

  5. Mei, H., Cheng, L.: Comparison of the mechanical hysteresis of carbon/ceramic-matrix composites with different fiber preforms. Carbon. 49, 1034–1042 (2009)

    Article  Google Scholar 

  6. Chang, Y., Jiao, G., Wang, B., Liu, W.: Elastic behavior analysis of 3D angle-interlock woven ceramic composites. Acta. Mech. Solida. Sin. 19, 152–159 (2006)

    Article  Google Scholar 

  7. Xu, J., Lomov, S., Verpoest, L., Daggumati, S., Paepegem, W.V., Degrieck, J.: Meso-scale Modeling of Static and Fatigue Damage in Woven Composite Materials with Finite Element Method. Proceedings of 17th International Cofference on Composite Materials, Edinburgh (2009)

    Google Scholar 

  8. Fem, N., Alam, P., Touaiti, F., Toivakka, M.: Fatigue life prediction of porous composite paper coating. Int. J. Fatigue. 38, 181–187 (2012)

    Article  Google Scholar 

  9. Idriss, M., Mahi, A.E., Assrar, M., Guerjouma, R.E.: Damping analysis in cycilc fatigue loading of sandwich beams with debonding. Compos. Part B. 44, 597-603 (2013)

  10. Budiansky, B., Hutchinson, J.W., Evans, A.G.: Matrix facture in fiber-reinforced ceramics. J. Mech. Phys. Solids. 34, 167–189 (1986)

    Article  Google Scholar 

  11. Li, L., Song, Y.: An approach to estimate Interface shear stress of ceramic matrix composite from hysteresis loops. Appl. Compos. Mater. 17, 309–328 (2010)

    Article  Google Scholar 

  12. Li, L., Song, Y.: Effect of fiber failure on quasi-static unloading/reloading hysteresis loops of ceramic matrix composites. Transactions of Nanjing University of Aeronautics & Astronautics. 28, 95–102 (2011)

    Google Scholar 

  13. Li, L., Song, Y.: Estimate Interface frictional coefficient of ceramic matrix Compsoites from hysteresis loops. J. Compos. Mater. 45, 989–1006 (2011)

    Article  Google Scholar 

  14. Dalmaz, A., Reynaud, P., Rouby, D., Fantozzi, G., Abbe, F.: Mechanical behavior and damage development during cyclic fatigue an high-temperature of a 2.5D carbon/SiC composite. Compos. Sci. Technol. 58, 693–699 (1998)

    Article  Google Scholar 

  15. Dalmaz, A., Ducret, D., Guerjouma, R.E., Reynaud, P., Franciosi, P., Rouby, D., et al.: Elastic moduli of a 2.5D Cf/SiC composite: experimental and theoretical estimates. Compos. Sci. Technol. 60, 913–925 (2000)

    Article  Google Scholar 

  16. Chen, L., Yao, X., Cen, S.: Predictions of elastic property on 2.5D C/SiC composites based onnumerical modeling and semi-analytical method. Compos. Part B. 74, 53–65 (2015)

    Article  Google Scholar 

  17. Li, Y., Xiao, P., Luo, H., Almeida, R.S.M., Li, Z., Zhou, W., et al.: Fatigue behavior and residual strength evolution of 2.5D C/C-SiC composites. J. Eur. Ceram. Soc. 36, 3977–3985 (2016)

    Article  Google Scholar 

  18. Zhang, C., Zhao, M., Liu, Y., Wang, B., Wang, X., Qiao, S.: Tensile strength degradation of a 2.5D-C/SiC composite under thermal cycles in air. J. Eur. Ceram. Soc. 36, 3011–3019 (2016)

    Article  Google Scholar 

  19. Kong, C., Sun, Z., Gao, X., Song, Y.: Tensile property of 2.5D C/SiC composite in warp direction. Acta Materiae Compositae Sinica. 29, 192–198 (2012)

    Google Scholar 

  20. Kong, C., Sun, Z., Gao, X., Song, Y.: Unit cell of 2.5D C/SiC and its stiffness prediction. J. Aerosp. Power. 26, 2459–2476 (2011).

  21. Mital, S.K., Murthy, P.L., Chamis, C.C.: Simplified micromechanics of plain weave composites. J. Adv. Mater. -Covina-. 33, 10–17 (2001)

  22. Li, L.: Fatigue Damage Models and Life Prediction of Long-Fiber-Reinforced Ceramic Matrix Composites [Doctor]. Nanjing University of Aeronautics and Astronautics, Nanjing (2011)

    Google Scholar 

  23. Li, L., Song, Y.: Influence of fiber failure on fatigue hysteresis loops of ceramic matrix composites. J. Reinf. Plast. Compos. 30, 12–25 (2011)

    Article  Google Scholar 

  24. Wang, K., Cheng, Q., Zheng, X., Tong, X., Yao, L.: Experimental investigation on the tension-tension fatigue characteristics of plain-woven C/SiC composite. Journal of Mechanical Strength. 32, 130–133 (2010)

    Google Scholar 

Download references

Acknowledgements

Supports of this project provided by National Basic Research Program of China, National Natural Science Foundation of China (51675266), Aeronautical Science Foundation of China (2014ZB52024), the Fundamental Research Funds for the Central Universities (NJ20160038, NS2017011), the 2016 graduate innovation base (Laboratory) open fund (kfjj20160203) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Sun, Z., Yang, F. et al. Fatigue Hysteresis Behavior of 2.5D Woven C/SiC Composites: Theory and Experiments. Appl Compos Mater 24, 1387–1403 (2017). https://doi.org/10.1007/s10443-017-9591-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-017-9591-y

Keywords

Navigation