Skip to main content
Log in

Identification of non-linear parameter of a cantilever beam model with boundary condition non-linearity in the presence of noise: an NSI- and ANN-based approach

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study the non-linear system identification (NSI) and parameter estimation of a model of a cantilever beam with non-linear stiffness attached to its free end are investigated. For this purpose, the impulse response of the beam model, in the presence of added measurement noise, is obtained by solving the weak form of the governing equation of motion via Rayleigh–Ritz method. The non-linear interaction model (NIM) including a set of intrinsic modal oscillators (IMOs) is constructed based on intrinsic mode functions (IMFs), which are derived by applying empirical mode decomposition (EMD) on the noise-contaminated response signals. For reducing the effect of noise and increasing the accuracy of extracted IMFs, the EMD-based noise reduction is employed, followed by the modification of the IMF amplitudes by introducing a “beta-factor” criterion. The changes in the amplitudes of the forcing functions associated with IMOs are used to extract features to estimate the non-linear parameter of the system. To this end, an artificial neural network has been trained to establish the non-linear relationship between the non-linearity of the system and the forcing functions of IMOs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area, \(\hbox {m}^2\)

\(a_k \) :

Acceleration of the \(k\hbox {th}\) coordinate

\(a_k^n \) :

Artificial contaminated acceleration

\(B_m \) :

Amplitude of the masking signal

C:

Constant coefficient

\(c_j \) :

\(j\hbox {th}\) IMF

E :

Young’s modulus, \(\hbox {N}/\hbox {m}^{2}\)

F :

Impulsive force, N

\(\bar{{F}}\) :

Non-dimensional external force

\(\mathbb {F}\) :

Feature

\(f_{11}^q \) :

Elements of the force vector

\(f_{i1}^t \) :

Elements of the force vector

H:

Hilbert transform

I :

Identity matrix

I :

Second moment of cross-sectional area, \(\hbox {m}^4\)

\(k^{qq}_{11} \) :

Stiffness matrix elements

\(k^{tt}_{ij} \) :

Stiffness matrix elements

\(k_{nl} \) :

Non-linear coefficient of the spring, \(\hbox {N}/\hbox {m}^{3}\)

l :

Length, m

\(m^{qq}_{11} \) :

Mass matrix elements

\(m^{tq}_{i1} \) :

Mass matrix elements

N :

Number of modes

\(n_i^j \) :

\(i\hbox {th}\) neuron of the \(j\hbox {th}\) layer

o :

Output

p :

Number of patterns

q :

Time response

R:

Correlation factor

\(R_{m+1} \) :

 Residue

s :

Non-dimensional axial coordinate

s*:

Non-dimensional location of force

sig :

A given signal

\(T_{i}\) :

Time response

\(U_{i}\) :

Mode function of clamped-pinned beam

UII:

Theil parameter

u :

Non-dimensional transverse displacement

\(\mathbf{W}^{k}\) :

weight matrix of \(k\hbox {th}\) layer

w :

Transverse displacement, m

\(w_{i,j}^k \) :

Weight connecting the \(i\hbox {th}\) neuron to the \(j\hbox {th}\) source in the \(k\hbox {th}\) layer

x :

Axial coordinate

x*:

Location of force along the beam, m

\(x_{mask} \) :

 Masking signal

y :

Target

z :

Vertical coordinate

\(\beta \) :

Beta-factor

\(\gamma \) :

Non-dimensional non-linear parameter

\(\Delta \) :

Deviation of the natural logarithms from the calculated line

\(\zeta \) :

Linear modal damping ratios

\(\eta \) :

Generalized coordinate

\(\Lambda _m\) :

Forcing amplitude of the \(m\hbox {th}\) IMO

\(\lambda _m \) :

Damping coefficients of the \(m\hbox {th}\) IMO

\(\mu \) :

Average relative error

\(\rho \) :

Mass density, kg/m3

\({\upsigma }\) :

Standard deviation of error

\(\sigma _a^2 \) :

Variance of the acceleration signal

\(\sigma _n^2 \) :

Variance of the noise signal

\(\tau \) :

Non-dimensional time

\({\varvec{\Phi }} \) :

Modal eigenvector matrix

\(\varphi _{ij} \) :

Elements of matrix \({\varvec{\Phi }}\)

\(\varphi _m \) :

Complex slow-varying amplitude

\(\psi \) :

Static mode deflection

\(\Omega \) :

Eigenvalue of the linear free vibration

\(\omega _j\) :

\(j\hbox {th}\) dominant frequency

\(\varpi _m\) :

Frequency of the masking signal

AEMD:

Advanced empirical mode decomposition

ANN:

Artificial neural network

CPD:

Conjugate-pair decomposition

EMD:

Empirical mode decomposition

FFT:

Fast Fourier transform

IMF:

Intrinsic mode function

IMO:

Intrinsic modal oscillator

LMBPA:

Levenberg–Marquardt backpropagation algorithm

MLP:

Multi-layer perceptron network

MSE:

Mean square error

MSRE:

Mean square relative error

NIM:

Non-linear interaction model

NNM:

Non-linear normal mode

NSI:

Non-linear system identification

POD:

Proper orthogonal decomposition

PSD:

Power spectral density

RMSRE:

Root of mean square relative error

ROM:

Reduced-order model

SNR:

Signal-to-noise ratio

SVD:

Singular value decomposition

References

  1. Paz, M.: Structural Dynamics: Theory and Computation. Springer, Berlin (2012)

    Google Scholar 

  2. Ljung, L.: System Identification. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  3. Amabili, M., Paıdoussis, M.P.: Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction. Appl. Mech. Rev. 56(4), 349–381 (2003)

    Article  Google Scholar 

  4. Richards, C., Singh, R.: Characterization of rubber isolator nonlinearities in the context of single-and multi-degree-of-freedom experimental systems. J. Sound Vib. 247(5), 807–834 (2001)

    Article  Google Scholar 

  5. Al-Bender, F., Symens, W., Swevers, J., Van Brussel, H.: Theoretical analysis of the dynamic behavior of hysteresis elements in mechanical systems. Int. J. Non-linear Mech. 39(10), 1721–1735 (2004)

    Article  MATH  Google Scholar 

  6. Kurt, M., Chen, H., Lee, Y.S., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Nonlinear system identification of the dynamics of a vibro-impact beam: numerical results. Arch. Appl. Mech. 82(10–11), 1461–1479 (2012)

    Article  MATH  Google Scholar 

  7. McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Experimental study of non-linear energy pumping occurring at a single fast frequency. Int. J. Non-linear Mech. 40(6), 891–899 (2005). doi:10.1016/j.ijnonlinmec.2004.11.001

    Article  MATH  Google Scholar 

  8. Avramov, K., Gendelman, O.: Quasiperiodic forced vibrations of a beam interacting with a nonlinear spring. Acta Mech. 192(1–4), 17–35 (2007)

    Article  MATH  Google Scholar 

  9. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, London (2008)

    MATH  Google Scholar 

  10. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, London (2011)

    MATH  Google Scholar 

  11. Touzé, C., Thomas, O., Huberdeau, A.: Asymptotic non-linear normal modes for large-amplitude vibrations of continuous structures. Comput. Struct. 82(31), 2671–2682 (2004)

    Article  Google Scholar 

  12. Shang-Rou, H., Shaw, S.W., Pierre, C.: Normal modes for large amplitude vibration of a cantilever beam. Int. J. Solids Struct. 31(14), 1981–2014 (1994)

    Article  MATH  Google Scholar 

  13. Vakakis, A.F., Rand, R.H.: Normal modes and global dynamics of a two-degree-of-freedom non-linear system-I. Low energies. Int. J. Non-linear Mech. 27(5), 861–874 (1992). doi:10.1016/0020-7462(92)90040-E

    Article  MATH  Google Scholar 

  14. Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.-C.: Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Process. 20(3), 505–592 (2006)

    Article  Google Scholar 

  15. Noël, J.-P., Kerschen, G.: Nonlinear system identification in structural dynamics: 10 more years of progress. Mech. Syst. Signal Process. 83, 2–35 (2017)

    Article  Google Scholar 

  16. Chen, S., Billings, S., Grant, P.: Non-linear system identification using neural networks. Int. J. Control 51(6), 1191–1214 (1990)

    Article  MATH  Google Scholar 

  17. Zadeh, L.A.: Fuzzy logic, neural networks, and soft computing. Commun. ACM 37(3), 77–84 (1994)

    Article  Google Scholar 

  18. Billings, S., Wei, H.-L.: A new class of wavelet networks for nonlinear system identification. IEEE Trans. Neural Netw. 16(4), 862–874 (2005)

    Article  Google Scholar 

  19. Kerschen, G., Golinval, J.-C.: Physical interpretation of the proper orthogonal modes using the singular value decomposition. J. Sound Vib. 249(5), 849–865 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Billings, S.A.: Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-temporal Domains. Wiley, New York (2013)

    Book  MATH  Google Scholar 

  21. Frank Pai, P., Nguyen, B.-A., Sundaresan, M.J.: Nonlinearity identification by time-domain-only signal processing. Int. J. Non-linear Mech. 54, 85–98 (2013). doi:10.1016/j.ijnonlinmec.2013.04.002

    Article  Google Scholar 

  22. Thothadri, M., Casas, R., Moon, F., D’Andrea, R., Johnson Jr., C.: Nonlinear system identification of multi-degree-of-freedom systems. Nonlinear Dyn. 32(3), 307–322 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mahmoud, M.A., Abu Kiefa, M.A.: Neural network solution of the inverse vibration problem. NDT & E Int. 32(2), 91–99 (1999)

    Article  Google Scholar 

  24. Xu, B., Wu, Z., Chen, G., Yokoyama, K.: Direct identification of structural parameters from dynamic responses with neural networks. Eng. Appl. Artif. Intell. 17(8), 931–943 (2004)

    Article  Google Scholar 

  25. Lotfan, S., Salehpour, N., Adiban, H., Mashroutechi, A.: Bearing fault detection using fuzzy C-means and hybrid C-means-subtractive algorithms. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 2015, pp. 1–7. IEEE

  26. Kim, Y., Hong, J.-C., Lee, N.-Y.: Frequency response function estimation via a robust wavelet de-noising method. J. Sound Vib. 244(4), 635–649 (2001)

    Article  Google Scholar 

  27. Lariviere, J., Goubran, R.: GMDF for noise reduction and echo cancellation. IEEE Signal Process. Lett. 7(8), 230–232 (2000)

    Article  Google Scholar 

  28. Yang, W.-X., Peter, W.T.: Development of an advanced noise reduction method for vibration analysis based on singular value decomposition. Ndt & E Int. 36(6), 419–432 (2003)

    Article  Google Scholar 

  29. Boudraa, A., Cexus, J., Saidi, Z.: EMD-based signal noise reduction. Int. J. Signal Process. 1(1), 33–37 (2004)

    Google Scholar 

  30. Boudraa, A.-O., Cexus, J.-C.: EMD-based signal filtering. IEEE Trans. Instrum. Meas. 56(6), 2196–2202 (2007)

    Article  Google Scholar 

  31. Lee, Y.S., Tsakirtzis, S., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: Physics-based foundation for empirical mode decomposition. AIAA J. 47(12), 2938–2963 (2009)

    Article  Google Scholar 

  32. Lee, Y.S., Tsakirtzis, S., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: A time-domain nonlinear system identification method based on multiscale dynamic partitions. Meccanica 46(4), 625–649 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lee, Y., Vakakis, A., McFarland, D., Bergman, L.: A global-local approach to nonlinear system identification: a review. Struct. Control Health Monit. 17(7), 742–760 (2010)

    Article  Google Scholar 

  34. Chen, H., Kurt, M., Lee, Y.S., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Experimental system identification of the dynamics of a vibro-impact beam with a view towards structural health monitoring and damage detection. Mech. Syst. Signal Process. 46(1), 91–113 (2014)

    Article  Google Scholar 

  35. Eriten, M., Kurt, M., Luo, G., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Nonlinear system identification of frictional effects in a beam with a bolted joint connection. Mech. Syst. Signal Process. 39(1), 245–264 (2013)

    Article  Google Scholar 

  36. Kurt, M., Eriten, M., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Strongly nonlinear beats in the dynamics of an elastic system with a strong local stiffness nonlinearity: analysis and identification. J. Sound Vib. 333(7), 2054–2072 (2014)

    Article  Google Scholar 

  37. Tsakirtzis, S., Lee, Y., Vakakis, A., Bergman, L., McFarland, D.: Modelling of nonlinear modal interactions in the transient dynamics of an elastic rod with an essentially nonlinear attachment. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2617–2633 (2010)

    Article  MATH  Google Scholar 

  38. Sadati, S.S., Nobari, A., Naraghi, T.: Identification of a nonlinear joint in an elastic structure using optimum equivalent linear frequency response function. Acta Mech. 223(7), 1507–1516 (2012)

    Article  MATH  Google Scholar 

  39. Rato, R., Ortigueira, M., Batista, A.: On the HHT, its problems, and some solutions. Mech. Syst. Signal Process. 22(6), 1374–1394 (2008)

    Article  Google Scholar 

  40. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 1998, vol. 1971, pp. 903–995. The Royal Society

  41. Vakakis, A., Bergman, L., McFarland, D., Lee, Y., Kurt, M.: Current efforts towards a non-linear system identification methodology of broad applicability. In: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0954406211417217 (2011)

  42. Deering, R., Kaiser, J.F.: The use of a masking signal to improve empirical mode decomposition. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005. Proceedings (ICASSP’05) 2005, vol. 484, pp. iv/485–iv/488. IEEE

  43. Gledhill, R.J.: Methods for Investigating Conformational Change in Biomolecular Simulations. University of Southampton, Southampton (2003)

    Google Scholar 

  44. Rosenblatt, F.: Principles of neurodynamics: perceptrons and the theory of brain mechanisms. Cornell Aeronautical Laboratory. Report no. VG-1196-G-8 (1962)

  45. Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design, vol. 1. Pws, Boston (1996)

    Google Scholar 

  46. Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: a review of classification techniques. In: Proceeding of the 2007 conference on Emerging Artificial Intelligence Applications in Computer Engineering: Real Word AI Systems with Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies, pp. 3–24 (2007)

  47. Theil, H.: Applied economic forecasting. North-Holland, Amsterdam (1966)

  48. Lotfan, S., Ghiasi, R.A., Fallah, M., Sadeghi, M.: ANN-based modeling and reducing dual-fuel engine’s challenging emissions by multi-objective evolutionary algorithm NSGA-II. Appl. Energy 175, 91–99 (2016)

    Article  Google Scholar 

  49. Bliemel, F.: Theil’s forecast accuracy coefficient: a clarification. J. Mark. Res. 10, 444–446 (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza H. Sadeghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, M.H., Lotfan, S. Identification of non-linear parameter of a cantilever beam model with boundary condition non-linearity in the presence of noise: an NSI- and ANN-based approach. Acta Mech 228, 4451–4469 (2017). https://doi.org/10.1007/s00707-017-1947-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1947-8

Navigation