Skip to main content
Log in

A time-domain nonlinear system identification method based on multiscale dynamic partitions

  • Original Article
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Based on a theoretical foundation for empirical mode decomposition, which dictates the correspondence between the analytical and empirical slow-flow analyses, we develop a time-domain nonlinear system identification (NSI) technique. This NSI method is based on multiscale dynamic partitions and direct analysis of measured time series, and makes no presumptions regarding the type and strength of the system nonlinearity. Hence, the method is expected to be applicable to broad classes of applications involving time-variant/time-invariant, linear/nonlinear, and smooth/non-smooth dynamical systems. The method leads to nonparametric reduced order models of simple form; i.e., in the form of coupled or uncoupled oscillators with time-varying or time-invariant coefficients forced by nonhomogeneous terms representing nonlinear modal interactions. Key to our method is a slow/fast partition of transient dynamics which leads to the identification of the basic fast frequencies of the dynamics, and the subsequent development of slow-flow models governing the essential dynamics of the system. We provide examples of application of the NSI method by analyzing strongly nonlinear modal interactions in two dynamical systems with essentially nonlinear attachments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ewins DJ (1990) Modal testing: theory and practice. Research Studies Press, Baldock

    Google Scholar 

  2. Ibrahim SR, Mikulcik EC (1973) A time domain modal vibration test technique. Shock Vib Bull 43:21–37

    Google Scholar 

  3. Juang J-N, Pappa R (1985) An eigensystem realization algorithm for modal parameter identification and model reduction. J Guid Control Dyn 8(5):620–627

    Article  MATH  Google Scholar 

  4. Van Overschee P, De Moor B (1995) A unifying theorem for three subspace system identification algorithms. Automatica 31(12):1853–1864

    Article  MATH  MathSciNet  Google Scholar 

  5. Kerschen G, Worden K, Vakakis AF, Golinval J-C (2006) Past, present and future of nonlinear system identification in structural dynamics. Mech Syst Signal Process 20(3):505–592

    Article  ADS  Google Scholar 

  6. Silva W (2005) Identification of nonlinear aeroelastic systems based on the Volterra theory: Progress and opportunities. Nonlinear Dyn 39(1):25–62

    Article  MATH  Google Scholar 

  7. Masri S, Caughey T (1979) A nonparametric identification technique for nonlinear dynamic systems. Trans ASME J Appl Mech 46:433–441

    Article  MATH  Google Scholar 

  8. Leontaritis IJ, Billings SA (1985) Input-output parametric models for nonlinear systems. Part I. Deterministic nonlinear systems. Int J Control 41:303–328

    Article  MATH  MathSciNet  Google Scholar 

  9. Leontaritis IJ, Billings SA (1985) Input-output parametric models for nonlinear systems. Part II. Stochastic nonlinear systems. Int J Control 41:329–344

    Article  MATH  MathSciNet  Google Scholar 

  10. Feldman M (1994) Non-linear system vibration analysis using Hilbert transform—I. Free vibration analysis method ‘Freevib’. Mech Syst Signal Process 8(2):119–127

    Article  ADS  Google Scholar 

  11. Feldman M (1994) Non-linear system vibration analysis using Hilbert transform—II. Forced vibration analysis method ‘Forcevib’. Mech Syst Signal Process 8(3):309–318

    Article  ADS  Google Scholar 

  12. Thothadri M, Casas RA, Moon FC, D’Andrea R, Johnson CR (2003) Nonlinear system identification of multi-degree-of-freedom systems. Nonlinear Dyn 32(3):307–322

    Article  MATH  MathSciNet  Google Scholar 

  13. Masri S, Miller R, Saud A, Caughey T (1987) Identification of nonlinear vibrating structures. I. Formulation. Trans ASME J Appl Mech 54(4):918–922

    Article  MATH  Google Scholar 

  14. Masri S, Miller R, Saud A, Caughey T (1987) Identification of nonlinear vibrating structures. II. Applications. Trans ASME J Appl Mech 54(4):923–950

    Article  MATH  Google Scholar 

  15. Masri SF, Caffrey JP, Caughey TK, Smyth AW, Chassiakos AG (2005) A general data-based approach for developing reduced-order models of nonlinear MDOF systems. Nonlinear Dyn 39(1):95–112

    Article  MATH  Google Scholar 

  16. Masri S, Tasbihgoo F, Caffrey J (2007) Development of data-based model-free representation of non-conservative dissipative systems. Int J Non-Linear Mech 42(1):99–117

    Article  Google Scholar 

  17. Lee YS, Tsakirtzis S, Vakakis AF, Bergman LA, McFarland DM (2009) Physics-based foundation for empirical mode decomposition. AIAA J 47(12):2938–2963. doi:10.2514/1.43207

    Article  ADS  Google Scholar 

  18. Manevitch LI (1999) Complex representation of dynamics of coupled nonlinear oscillators. In: Mathematical models of non-linear excitations, transfer, dynamics, and control in condensed systems and other media, pp 269–300

  19. Manevitch LI (2001) The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dyn 25:95–109

    Article  MATH  MathSciNet  Google Scholar 

  20. Vakakis AF, Gendelman O, Bergman LA, McFarland DM, Kerschen G, Lee YS (2008) Passive nonlinear targeted energy transfer in mechanical and structural systems: I and II. Springer, Berlin

    Google Scholar 

  21. Lochak P, Meunier C (1988) Multiphase averaging for classical systems: with applications to adiabatic theorems. Springer, Berlin

    Book  MATH  Google Scholar 

  22. Huang N, Shen Z, Long S, Wu M, Shih H, Zheng Q, Yen N-C, Tung C, Liu H (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond, Ser A Math Phys Sci 454:903–995

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Rilling G, Flandrin P, Gono̧alvès P (2003) On empirical mode decomposition and its algorithms. In: IEEE-Eurasip workshop on nonlinear signal and image processing, Grado, Italy

  24. Sharpley RC, Vatchev V (2004) Analysis of the intrinsic mode functions. Industrial Mathematics Institute (IMI) Technical Reports, Department of Mathematics, University of South Carolina, No 12

  25. Nayfeh A, Mook D (1979) Nonlinear oscillations. Wiley, New York

    MATH  Google Scholar 

  26. Bedrosian E (1963) A product theorem for Hilbert transform. Proc IEEE 51:868–869

    Article  Google Scholar 

  27. Kerschen G, Lee YS, Vakakis AF, McFarland DM, Bergman LA (2006) Irreversible passive energy transfer in coupled oscillators with essential nonlinearity. SIAM J Appl Math 66(2):648–679

    Article  MATH  MathSciNet  Google Scholar 

  28. Lee YS, Vakakis AF, Bergman LA, McFarland DM, Kerschen G (2005) Triggering mechanisms of limit cycle oscillations due to aeroelastic instability. J Fluids Struct 21(5–7):485–529

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young S. Lee.

Additional information

This work was supported in part by the US Air Force Office of Scientific Research through Grant Number FA9550-07-1-0335.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y.S., Tsakirtzis, S., Vakakis, A.F. et al. A time-domain nonlinear system identification method based on multiscale dynamic partitions. Meccanica 46, 625–649 (2011). https://doi.org/10.1007/s11012-010-9327-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-010-9327-7

Keywords

Navigation