Skip to main content
Log in

Nonlinear system identification of the dynamics of a vibro-impact beam: numerical results

  • Special Issue
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

We study the dynamics of a cantilever beam with two rigid stops of certain clearances by performing nonlinear system identification (NSI) based on the correspondence between analytical and empirical slow-flow dynamics. The NSI method in this work can proceed in two directions: One for the numerical data obtained from a reduced-order model by means of the assumed-mode method, and the other for the experimental data measured at the same positions as in numerical simulations. This paper focuses on the analysis of the numerical data, providing qualitative comparison with some experimental results; the latter task will be discussed in detail in a companion paper. First, we perform empirical mode decomposition (EMD) on the acceleration responses measured at ten, almost evenly-spaced, spanwise positions along the beam leading to sets of intrinsic modal oscillators governing the vibro-impact dynamics at different time scales. In particular, the EMD analysis can separate any nonsmooth effects caused by vibro-impacts of the beam and the rigid stops from the smooth (elastodynamic) response, so that nonlinear modal interactions caused by vibro-impacts can be explored only with the remaining smooth components. Then, we establish nonlinear interaction models (NIMs) for the respective intrinsic modal oscillators, where the NIMs invoke slowly-varying forcing amplitudes that can be computed from empirical slow-flows. By comparing the spatio-temporal variations of the nonlinear modal interactions for the vibro-impact beam and those of the underlying linear model (i.e., the beam with no rigid constraints), we demonstrate that vibro-impacts significantly influence the lower-frequency modes, introducing spatial modal distortions, whereas the higher frequency modes tend to retain their linear dynamics between impacts. We introduce a linear correlation coefficient as a measure for studying the linear dependency between the slowly-varying complex forcing amplitudes for the linear and vibro-impact beams and demonstrate that only a set of lower-frequency modes are strongly influenced by vibro-impacts, capturing most of the essential nonlinear dynamics. These results demonstrate the efficacy of the proposed approach to analyze strongly nonlinear measured time series and provide physical insight for strong nonlinear dynamical interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DOF:

Degree-of-freedom

EMD:

Empirical mode decomposition

FEP:

Frequency-energy plot

FT:

Fourier transform

HT:

Hilbert transform

IMF:

Intrinsic mode function

IMO:

Intrinsic modal oscillator

NIM:

Nonlinear interaction model

NSI:

Nonlinear system identification

POD:

Proper orthogonal decomposition

ROM:

Reduced-order model

VI:

Vibro-impact

References

  1. Ewins D.J.: Modal Testing: Theory and Practice. Research Studies Press, UK (1990)

    Google Scholar 

  2. Brandon J.A.: Some insights into the dynamics of defective structures. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 212, 441–454 (1998)

    Article  Google Scholar 

  3. Kerschen G., Golinval J.-C., Vakakis A.F., Bergman L.A.: The method of proper orthogonal decomposition for order reduction of mechanical systems: an overview. Nonlinear Dyn. 41, 147–170 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kerschen G., Worden K., Vakakis A.F., Golinval J.-C.: Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Process. 20, 505–592 (2005)

    Article  Google Scholar 

  5. Feeny B.F., Kappagantu R.: On the physcal interpretation of proper orthogonal modes in vibrations. J. Sound Vib. 211, 607–616 (1998)

    Article  Google Scholar 

  6. Kerschen G., Golinval J.C.: Physical interpretation of the proper orthogonal modes using the singular value decomposition. J. Sound Vib. 249, 849–865 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bellizzi S., Sampaio R.: POMs analysis of randomly vibrating systems obtained from Karhunen-Loève expansion. J. Sound Vib. 297, 774–793 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Allison T.C., Miller A.K., Inman D.J.: A deconvolution-based approache to structural dynamics system identification and response prediction. J. Vib. Acoust. 130, 031010 (2008)

    Article  Google Scholar 

  9. Chelidze D., Zhou W.: Smooth orthogonal decomposition-based vibration mode identification. J. Sound Vib. 292, 461–473 (2006)

    Article  Google Scholar 

  10. Silva W.: Identification of nonlinear aeroelastic systems based on the Volterra theory: progress and opportunities. Nonlinear Dyn. 39, 25–62 (2005)

    Article  MATH  Google Scholar 

  11. Li L.M., Billings S.A.: Analysis of nonlinear oscillators using Volterra series in the frequency domain. J. Sound Vib. 330, 337–355 (2011)

    Article  Google Scholar 

  12. Mariani S., Ghisi A.: Unscented Kalman filtering for nonlinear structural dynamics. Nonlinear Dyn. 49, 131–150 (2007)

    Article  MATH  Google Scholar 

  13. Masri S., Caughey T.: A nonparametric identification techanique for nonlinear dynamic systems. J. Appl. Mech. 46, 433–441 (1979)

    Article  MATH  Google Scholar 

  14. Leontaritis, I.J., Billings, S.A.: Input–output parametric models for nonlinear systems. Part I. Deterministic nonlinear systems; Part II. Stochastic nonlinear systems. Int. J. Control 41, 303–328; 329–344 (1985)

    Google Scholar 

  15. Thothadri M., Casas R.A., Moon F.C., D’Andrea R., Johnson C.R. Jr: Nonlinear system identification of multi-degree-of-freedom systems. Nonlinear Dyn. 32, 307–322 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feldman, M.: Non-linear system vibration analysis using Hilbert transform–I. Free vibration analysis method ‘FREEVIB’; II. Forced vibration analysis method ‘FORCEVIB’. Mech. Syst. Signal Proces. 8, 119–127; 309–318 (1994)

  17. Feldman M.: Time-varying vibration decomposition and analysis based on the Hilbert transform. J. Sound Vib. 295, 518–530 (2006)

    Article  MATH  Google Scholar 

  18. Ma X., Azeez M.F.A., Vakakis A.F.: Non-linear normal modes and non-parametric system identification of non-linear oscillators. Mech. Syst. Signal Process. 14, 37–48 (2000)

    Article  Google Scholar 

  19. Georgiou I.: Advanced proper orthogonal decomposition tools: using reduced order models to identify normal modes of vibration and slow invariant manifolds in the dynamics of planar nonlinear rods. Nonlinear Dyn. 41, 69–110 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Galvanetto U., Surace C., Tassotti A.: Structural damage detection based on proper orthogonal decomposition: experimental verification. AIAA J. 46, 1624–1630 (2008)

    Article  Google Scholar 

  21. Cusumano J.P., Bae B.-Y.: Period-infinity periodic motions, chaos, and spatial coherence in a 10 degree of freedom impact oscillator. Chaos, Solitons Fractals 3, 515–535 (1993)

    Article  MATH  Google Scholar 

  22. Cusumano J.P., Sharkady M.T., Kimble B.W.: Experimental measurements of dimensionality and spatial coherence in the dynamics of a flexible-bea impact oscillator. Philos. Trans. R. Soc. Ser. A 347, 421–438 (1994)

    Article  Google Scholar 

  23. Ritto T.G., Buezas F.S., Sampaio R.: A new measure of efficiency for model reduction: application to a vibroimpact system. J. Sound Vib. 330, 1977–1984 (2011)

    Article  Google Scholar 

  24. Azeez M.F.A., Vakakis A.F.: Proper orthogonal decomposition (POD) of a class of vibroimpact oscillations. J. Sound Vib. 240, 859–889 (2001)

    Article  Google Scholar 

  25. Lee Y.S., Vakakis A.F., McFarland D.M., Bergman L.A.: A global-local approach to system identification: a review. Struct. Control Health Monit. 17, 742–760 (2010)

    Article  Google Scholar 

  26. Huang N., Shen Z., Long S., Wu M., Shih H., Zheng Q., Yen N.-C, Tung C., Liu H.: The empirical mode decompostion and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 454, 903–995 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lee Y.S., Tsakirtzis S., Vakakis A.F., Bergman L.A., McFarland D.M.: Physics-based foundation for empirical mode decomposition. AIAA J. 47, 2938–2963 (2009)

    Article  Google Scholar 

  28. Lee Y.S., Tsakirtzis S., Vakakis A.F., McFarland D.M., Bergman L.A.: A time-domain nonlinear system identification method based on multiscale dynamic partitions. Meccanica 46, 625–649 (2010)

    Article  MathSciNet  Google Scholar 

  29. Lee Y.S., Vakakis A.F., McFarland D.M., Bergman L.A.: Nonlinear system identification of the dynamics of aeroelastic instability suppression based on targeted energy transfers. Aeronaut. J. 114, 61–82 (2010)

    Google Scholar 

  30. Tsakirtzis S., Lee Y.S., Vakakis A.F., Bergman L.A., McFarland D.M.: Modeling of nonlinear modal interactions in the transient dynamics of an elastic rod with an essentially nonlinear attachment. Commun. Nonlinear Sci. Numer. Simul. 15, 2617–2633 (2010)

    Article  MATH  Google Scholar 

  31. Dawes J.H.P.: Review: the emergence of a coherent structure for coherent structures: localized states in nonlinear systems. Philos. Trans. R. Soc. Ser. A 368, 3519–3534 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chati M., Rand R., Mukherjee S.: Modal analysis of a cracked beam. J. Sound Vib. 207, 249–270 (1997)

    Article  MATH  Google Scholar 

  33. Chen H.G., Yan Y.J., Jiang J.S.: Vibration-based damage detection in composite wingbox structures by HHT. Mech. Syst. Signal Process. 21, 307–321 (2007)

    Article  Google Scholar 

  34. Mane, M.: Experiments in Vibro-Impact Beam Dynamics and a System Exhibiting a Landau-Zener Quantum Effect. MS Thesis (unpublished), Univeristy of Illinois at Urbana-Champaign (2010)

  35. Blevins R.D.: Formulas for Natural Frequency and Mode Shape. Krieger, New York (1995)

    Google Scholar 

  36. Manevitch L.: The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dyn. 25, 95–109 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lochak P., Meunier C.: Multiphase Averaging for Classical Systems: With Applications to Adiabatic Theorems. Springer, New York (1988)

    Book  MATH  Google Scholar 

  38. Lee Y.S., Nucera F., Vakakis A.F., McFarland D.M., Bergman L.A.: Periodic orbits and damped transitions of vibro-impact dynamics. Phys. D 238, 1868–1896 (2009)

    Article  MATH  Google Scholar 

  39. Nordmark A.B.: Existence of periodic orbits in grazing bifurcations of impacting mechanical oscillators. Nonlinearity 14, 1517–1542 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Deléchelle E., Lemoine J., Niang O.: Empirical mode decomposition: an analytical approach for sifting process. IEEE Signal Process. Lett. 12, 764–767 (2005)

    Article  Google Scholar 

  41. Lee, Y.S., Chen, H., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Nonlinear system identification of vibro-impact nonsmooth dynamical systems (AIAA-2011-2067). In: 52nd AIAA Structures, Structural Dynamics and Materials Conference, Denver, Colorado, 4–7 April 2011 (2011)

  42. Gibbons J.D.: Nonparametric Statistical Inference. 2nd edn. M. Dekker, New York (1985)

    MATH  Google Scholar 

  43. Chen, H., Kurt, M., Lee, Y.S., McFarland, D.M., Bergman, L.A., and Vakakis, A.F.: System identification of a vibro-impact beam with a view toward structural health monitoring. Exp. Mech. (submitted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young S. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurt, M., Chen, H., Lee, Y.S. et al. Nonlinear system identification of the dynamics of a vibro-impact beam: numerical results. Arch Appl Mech 82, 1461–1479 (2012). https://doi.org/10.1007/s00419-012-0678-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-012-0678-5

Keywords

Navigation