Skip to main content
Log in

A new modified higher-order shear deformation theory for nonlinear analysis of macro- and nano-annular sector plates using the extended Kantorovich method in conjunction with SAPM

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this research, the nonlinear local and nonlocal analysis of an annular sector plate is studied and solved based on a new modified higher-order shear deformation theory. Due to the shortcomings of HSDT in the two-dimensional nonlinear analysis, it is modified by eliminating the defects, and a comprehensive theory is presented for analyzing the mechanical behavior of an annular sector sheet in general form. The strain field is developed by considering the von Karman assumptions and also the nonlocal theory of Eringen from which the classical local analysis can be deduced conveniently by neglecting the small-scale effects. Whereas the annular sector plate is assumed, the sector, annular/circular, rectangular and solid circular plates can be simulated. Afterward, the nonlocal constitutive equations are derived and solved by using the two-dimensional SAPM (Dastjerdi et al. in Compos B Eng 98, 78–87, 2016). Moreover, a combination of the extended Kantorovich method and one-dimensional SAPM is applied. Since the presented theory is relatively new and similar studying was not available in order to compare the results, a comparison is done with the results of lower-order theories. Finally, the effect of various parameters, such as boundary conditions, different theories, nonlocal and local analyses, loading and the size of the plate, on the mechanical behavior of an annular sector plate are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Y.: A refined shear deformation plates theory. Int. J. Comput. Meth. Eng. Sci. Mech. 12(3), 141–149 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Librescu, L.: On the theory of anisotropic elastic shells and plates. Int. J. Solids. Struct. 3(1), 53–68 (1967)

    Article  Google Scholar 

  3. Levinson, M.: An accurate simple theory of the static and dynamics of elastic plates. Mech. Res. Commun. 7(6), 343–350 (1980)

    Article  MATH  Google Scholar 

  4. Bhimaraddi, A., Stevens, L.K.: A higher-order theory for free vibration of orthotropic, homogeneous and laminated rectangular plates. Trans. ASME J. Appl. Mech. 51(1), 195–198 (1984)

    Article  Google Scholar 

  5. Reddy, J.N.: A refined nonlinear theory of plates with transverse shear deformation. Int. J. Solid Struct. 20(9–10), 881–896 (1984)

    Article  MATH  Google Scholar 

  6. Reddy, J.N.: A simple higher-order theory for laminated composite plates. Trans. ASME J. Appl. Mech. 51(4), 745–752 (1984)

    Article  MATH  Google Scholar 

  7. Reddy, J.N.: A general non-linear third-order theory of plates with moderate thickness. Int. J. Non Linear Mech. 25(6), 677–686 (1990)

    Article  MATH  Google Scholar 

  8. Ren, J.G.: A new theory of laminated plate. Compos. Sci. Technol. 26(3), 225–239 (1986)

    Article  Google Scholar 

  9. Mohan, P.R., Naganarayana, B.P., Prathap, G.: Consistent and variationally correct finite elements for higher-order laminated plate theory. Compos. Struct. 29, 445–456 (1994)

    Article  Google Scholar 

  10. Shi, Guangyu: A new simple third-order shear deformation theory of plates. Int. J. Solid Struct. 44(13), 4399–4417 (2007)

    Article  MATH  Google Scholar 

  11. Bhar, A., Phoenix, S.S., Satsangi, S.K.: Finite element analysis of laminated composite stiffened plates using FSDT and HSDT: A comparative perspective. Compos. Struct. 92, 312–321 (2010)

    Article  Google Scholar 

  12. Shankara, C.A.: Analysis of composite plates with higher order shear deformation theory. Mech. Res. Commun. 19(4), 301–314 (1992)

    Article  MATH  Google Scholar 

  13. Kant, T., Pandya, B.N.: Asimple finite element formulation of a higher-order theory for unsymmetrically laminated composite plates. Compos. Struct. 9(3), 215–246 (1988)

    Article  Google Scholar 

  14. Pandya, B.N., Kant, T.: Finite element analysis of laminated composite plates using a higher-order displacement model. Compos. Sci. Technol. 32(2), 137–155 (1988)

    Article  Google Scholar 

  15. Nosier, A., Yavari, A., Sarkani, S.: A study of the edge-zone equation of Mindlin–Reissner plate theory in bending of laminated rectangular plates. Acta. Mech. 146(3), 227–238 (2001)

    Article  MATH  Google Scholar 

  16. Nosier, A., Yavari, A., Sarkani, S.: On a boundary layer phenomenon in Mindlin–Reissner plate theory for laminated circular sector plates. Acta. Mech. 151(3), 149–161 (2001)

    Article  MATH  Google Scholar 

  17. Atashipour, S.R., Jomehzadeh, E., Saidi, A.R.: On the boundary layer phenomenon in bending of thick annular sector plates using third order shear deformation theory. Acta. Mech. 211(1), 89–99 (2010)

    Article  MATH  Google Scholar 

  18. Defu, W., El-Sheikh, A.I.: Large-deflection mathematical analysis of rectangular plates. J. Eng. Mech. 131(8), 809–821 (2005)

  19. Malekzadeh, P., Golbahar Haghighi, M.R., Gholami, M.: Dynamic response of thick laminated annular sector plates subjected to moving load. Compos. Struct. 92(1), 155–163 (2010)

    Article  Google Scholar 

  20. Wang, K.F., Wang, B.L.: A finite element model for the bending and vibration of nanoscale plates with surface effect. Finite. Elem. Anal. Des. 74, 22–29 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Phung-Van, P., De Lorenzis, L., Thai, ChH, Abdel-Wahab, M., Nguyen-Xuan, H.: Analysis of laminated composite plates integrated with piezoelectric sensors and actuators using higher-order shear deformation theory and isogeometric finite elements. Comput. Mater. Sci. 96, 495–505 (2014)

    Article  Google Scholar 

  22. Tran Loc, V., Lee, J., Nguyen-Van, H., Nguyen-Xuan, H., Abdel Wahab, M.: Geometrically nonlinear isogeometric analysis of laminated composite plates based on higher-order shear deformation theory. Int. J. Non Linear Mech. 72, 42–52 (2014)

    Article  Google Scholar 

  23. Kant, T., Shiyekar, S.M.: Cylindrical bending of piezoelectric laminates with a higher order shear and normal deformation theory. Comput. Struct. 86(15–16), 1594–1603 (2008)

    Article  Google Scholar 

  24. Zuo, H., Yang, Zh, Chen, X., Xie, Y., Miao, H.: Analysis of laminated composite plates using wavelet finite element method and higher-order plate theory. Compos. Struct. 131, 248–258 (2015)

    Article  Google Scholar 

  25. Natarajan, S., Haboussi, M., Manickam, G.: Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite facesheets. Compos. Struct. 113, 197–207 (2014)

    Article  Google Scholar 

  26. Lee, W.H., Han, SCh., Park, W.T.: A refined higher order shear and normal deformation theory for E-, P-, and S-FGM plates on Pasternak elastic foundation. Compos. Struct. 122, 330–342 (2015)

    Article  Google Scholar 

  27. Huu-Tai, Th, Dong-Ho, Ch.: Finite element formulation of various four unknown shear deformation theories for functionally graded plates. Finite. Elem. Anal. Des. 75, 50–61 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nosier, A., Fallah, F.: Reformulation of Mindlin-Reissner governing equations of functionally graded circular plates. Acta. Mech. 198(3), 209–233 (2008)

    Article  MATH  Google Scholar 

  29. Bodaghi, M., Saidi, A.R.: Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory. Appl. Math. Model. 34(11), 3659–3673 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Reddy, J.N.: A general nonlinear third-order theory of functionally graded plates. Int. J. Aero. Lightweight Struct. 1(1), 1–21 (2011)

    Article  MathSciNet  Google Scholar 

  31. Kant, T., Jha, D.K., Singh, R.K.: A higher-order shear and normal deformation functionally graded plate model: some recent results. Acta. Mech. 225(10), 2865–2876 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hauari, M.S.A., Tounsi, A., Anwar Bég, O.: Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory. Int. J. Mech. Sci. 76, 102–111 (2013)

    Article  Google Scholar 

  33. Talha, M., Singh, B.N.: Static response and free vibration analysis of FGM plates using higher order shear deformation theory. Appl. Math. Model. 34(12), 3991–4011 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mantari, J.L., Guedes Soares, C.: A quasi-3D tangential shear deformation theory with four unknowns for functionally graded plates. Acta. Mech. 226(3), 625–642 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Amirpour, M., Das, R., Saavedra Flores, E.I.: Analytical solutions for elastic deformation of functionally graded thick plates with in-plane stiffness variation using higher order shear deformation theory. Compos. B. Eng. 94, 109–121 (2016)

    Article  Google Scholar 

  36. Thai, ChH: Tran, Loc.V. Tran, D.T. Nguyen-Thoi, T., Nguyen-Xuan, H.: Analysis of laminated composite plates using higher-order shear deformation plate theory and node-based smoothed discrete shear gap method. Appl. Math. Model. 36(11), 5657–5677 (2012)

    Article  MathSciNet  Google Scholar 

  37. Thai, H.T., Kim, S.E.: A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates. Compos. Struct. 96, 165–173 (2013)

    Article  Google Scholar 

  38. Mantari, J.L., Guedes, Soares C.: Static response of advanced composite plates by a new non-polynomial higher-order shear deformation theory. Int. J. Mech. Sci. 78, 60–71 (2014)

    Article  Google Scholar 

  39. Oktem, A.S., Mantari, J.L., Guedes Soares, C.: Static response of functionally graded plates and doubly-curved shells based on a higher order shear deformation theory. Eur. J. Mech. A Solids. 36, 163–172 (2012)

    Article  MATH  Google Scholar 

  40. Carrera, E., Ciuffreda, A.: A unified formulation to assess theories of multilayered plates for various bending problems. Compos. Struct. 69, 271–293 (2005)

    Article  Google Scholar 

  41. Carrera, E., Brischetto, S., Cinefra, M., Soave, M.: Effects of thickness stretching in functionally graded plates and shells. Compos. B. Eng. 42, 123–133 (2011)

    Article  Google Scholar 

  42. Raghu, P., Preethi, K., Rajagopal, A., Reddy, J.N.: Nonlocal third-order shear deformation theory for analysis of laminated plates considering surface stress effects. Compos. Struct. 139(1), 13–29 (2016)

    Article  Google Scholar 

  43. Di Paola, M., Pirrotta, A., Zingales, M.: Mechanically-based approach to non-local elasticity: variational principles. Int. J. Solid. Struct. 47(5), 539–548 (2010)

    Article  MATH  Google Scholar 

  44. Aghababaei, R., Reddy, J.N.: Nonlocal third-order shear de formation plate theory with application to bending and vibration of plates. J. Sound. Vib. 326(1–2), 277–289 (2009)

    Article  Google Scholar 

  45. Dastjerdi, Sh, Jabbarzadeh, M.: Nonlinear bending analysis of bilayer orthotropic graphene sheets resting on Winklere-Pasternak elastic foundation based on non-local continuum mechanics. Compos. B Eng. 87, 161–175 (2016)

    Article  Google Scholar 

  46. Sobhy, M.: Thermomechanical bending and free vibration of single-layered graphene sheets embedded in an elastic medium. Phys. E Low. Dimens. Syst. Nanostruct. 56, 400–409 (2014)

    Article  Google Scholar 

  47. Dastjerdi, Sh, Aliabadi, Sh, Jabbarzadeh, M.: Decoupling of constitutive equations for multi-layered nano-plates embedded in elastic matrix based on non-local elasticity theory using first and higher-order shear deformation theories. J. Mech. Sci. Technol. 30(3), 1253–1264 (2016)

    Article  Google Scholar 

  48. Dastjerdi, Sh, Lotfi, M., Jabbarzadeh, M.: The effect of vacant defect on bending analysis of graphene sheets based on the Mindlin nonlocal elasticity theory. Compos. B Eng. 98, 78–87 (2016)

    Article  Google Scholar 

  49. Raghu, P., Preethi, K., Rajagopal, A., Reddy, J.N.: Nonlocal third-order shear deformation theory for analysis of laminated plates considering surface stress effects. Compos. Struct. 139, 13–29 (2016)

    Article  Google Scholar 

  50. Zhen, W., Ronggeng, Ch.: Refined laminated composite plate element based on global–local higher-order shear deformation theory. Compos. Struct. 70, 135–152 (2005)

    Article  Google Scholar 

  51. Won-Hong, L., Sung-Cheon, H., Weon-Tae, P.: A refined higher order shear and normal deformation theory for E-, P-, and SFGM plates on Pasternak elastic foundation. Compos. Struct. 122, 330–342 (2015)

    Article  Google Scholar 

  52. Wang, X., Shi, J.: A refined laminated plate theory accounting for the third-order shear deformation and interlaminar transverse stress continuity. Appl. Math. Modell. 39, 5659–5680 (2015)

    Article  MathSciNet  Google Scholar 

  53. Viola, E., Tornabene, F., Fantuzzi, N.: General higher-order shear deformation theories for the free vibration analysis of completely doubly-curved laminated shells and panels. Compos. Struct. 95, 639–666 (2013)

    Article  Google Scholar 

  54. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  55. Kerr, A.D.: An extension of the Kantorovich method. Q. Appl. Math. 26(2), 219–229 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  56. Golmakani, M.E., Alamatian, J.: Large deflection analysis of shear deformable radially functionally graded sector plates on two parameter elastic foundations. Eur. J. Mech. A Solids. 42, 251–265 (2013)

    Article  MathSciNet  Google Scholar 

  57. Tahani, M., Nosier, A., Zebarjad, S.M.: Deformation and stress analysis of circumferentially fiber-reinforced composite disks. Int. J. Solids Struct. 42, 2741–2754 (2005)

    Article  MATH  Google Scholar 

  58. Mousavi, S.M., Tahani, M.: Analytical solution for bending of moderately thick radially functionally graded sector plates with general boundary conditions using multi-term extended Kantorovich method. Compos. B Eng. 43, 1405–1416 (2012)

    Article  Google Scholar 

  59. Harik, I.E.: Analytical solution to orthotropic sector. ASCE J. Eng. Mech. 110, 554–568 (1984)

    Article  Google Scholar 

  60. Aghdam, M.M., Mohammadi, M., Erfanian, V.: Bending analysis of thin annular sector plates using extended Kantorovich method. Thin Wall. Struct. 45, 983–989 (2007)

    Article  Google Scholar 

  61. Matsunaga, H.: Stress analysis of functionally graded plates subjected to thermal and mechanical loadings. Compos. Struct. 87, 344–357 (2009)

    Article  Google Scholar 

  62. Mechab, I., Atmane, H., Tounsi, A., Belhadj, H.A., Adda Bedia, A.: A two variable refined plate theory for the bending analysis of functionally graded plates. Acta. Mech. Sin. 26(6), 941–949 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  63. Salehi, M., Sobhani, A.R.: Elastic linear and non-linear analysis of fiber-reinforced symmetrically laminated sector mindlin plate. Compos. Struct. 65, 65–79 (2004)

    Article  Google Scholar 

  64. Andakhshideh, A., Maleki, S., Aghdam, M.M.: Non-linear bending analysis of laminated sector plates using Generalized Differential Quadrature. Compos. Struct. 92, 2258–2264 (2010)

    Article  Google Scholar 

  65. Abaqus. Ver 6.10–1, Dassualt Systems, Inc. (2010)

  66. Mehrabian, M., Golmakani, M.E.: Nonlinear bending analysis of radial-stiffened annular laminated sector plates with dynamic relaxation method. Comput. Math. 69(10), 1272–1302 (2015)

    MathSciNet  Google Scholar 

  67. Alinaghizadeh, F., Shariati, M.: Geometrically non-linear bending analysis of thick two-directional functionally graded annular sector and rectangular plates with variable thickness resting on non-linear elastic foundation. Compos. B Eng. 86, 61–83 (2016)

    Article  Google Scholar 

  68. Han, J.B., Liew, K.M.: Numerical differential quadrature method for Reissner/Mindlin plates on two-parameter foundations. Int. J. Mech. Sci. 39(9), 977–989 (1997)

    Article  MATH  Google Scholar 

  69. Ferreira, A.J.M., Roque, C.M.C., Carrera, E., Cinefra, M.: Analysis of thick isotropic and cross-ply laminated plates by radial basis functions and a Unified Formulation. J. Sound. Vib. 330, 771–787 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahriar Dastjerdi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastjerdi, S., Abbasi, M. & Yazdanparast, L. A new modified higher-order shear deformation theory for nonlinear analysis of macro- and nano-annular sector plates using the extended Kantorovich method in conjunction with SAPM. Acta Mech 228, 3381–3401 (2017). https://doi.org/10.1007/s00707-017-1872-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1872-x

Navigation