Skip to main content
Log in

Generalized self-consistent electroelastic estimation of piezoelectric nanocomposites accounting for fiber section shape under antiplane shear

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Amicromechanicsmodel composed of a three-phase confocal elliptical cylinder of the nanocompositeswith interface effect is proposed.Ageneralized self-consistent method for the piezoelectric nanocomposites accounting for fiber section shape under far-field mechanical–electrical loads is presented based on the model. By using the theory of Gurtin–Murdoch surface/interface and the conformal mapping technique, a closedform solution of the effective electroelastic constants is obtained. The present solution can be degenerated into the existing solution. The results show that the effective electroelastic constants are dramatically size dependent when the size of the fiber is on the order of nanometers. The effective electroelastic constants decrease monotonically with the fiber section aspect ratio \({\gamma}\) increasing from 0 to 1. The elastic constant and dielectric constant obtained by the present solution are very similar to the results obtained by the classical electroelastic theory, whereas the piezoelectric coupling constant obtained by the present solution is very different from the results obtained by the classical electroelastic theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nemat-Nasser S., Hori M.: Micromechanics: Overall Properties of Heterogeneous Materials. Elsevier Science BV, Amsterdam (1999)

    MATH  Google Scholar 

  2. Dunn M.L., Taya M.: Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J. Solids Struct. 30, 161–175 (1993)

    Article  MATH  Google Scholar 

  3. Shi Y., Wan Y.P., Zhong Z.: Variational bounds for the effective electroelastic moduli of piezoelectric composites with electromechanical coupling spring-type interfaces. Mech. Mater. 72, 72–93 (2014)

    Article  Google Scholar 

  4. Hagood N.W., Pizzochero A.: Residual stiffness and actuation properties of piezoelectric composites: theory and experiment. J. Intell. Mater. Syst. Struct. 8, 724–737 (1997)

    Article  Google Scholar 

  5. Ray M.C., Faye A., Patra S., Bhattacharyya R.: Theoretical and experimental investigations on the active structural-acoustic control of a thin plate using a vertically reinforced 1–3 piezoelectric composite. Smart Mater. Struct. 18, 015012 (2009)

    Article  Google Scholar 

  6. Shindo Y., Narita F., Watanabe T.: Nonlinear electromechanical fields and localized polarization switching of 1–3 piezoelectric polymer composites. Eur. J. Mech. A-Solids 29, 647–653 (2010)

    Article  Google Scholar 

  7. Pettermann H.E., Suresh S.: A comprehensive unit cell model a study of coupled effects in piezoelectric 1–3 composites. Int. J. Solids Struct. 37, 5447–5464 (2000)

    Article  MATH  Google Scholar 

  8. Berger H., Kari S., Gabbert U., Rodriguez-Ramos R., Bravo-Castillero J., Guinovart-Diaz R.: Calculation of effective coefficients for piezoelectric fiber composites based on a general numerical homogenization technique. Compos. Struct. 71, 397–400 (2005)

    Article  Google Scholar 

  9. Dai Q.L., Ng K.: Investigation of electromechanical properties of piezoelectric structural fiber composites with micromechanics analysis and finite element modeling. Mech. Mater. 53, 29–46 (2012)

    Article  Google Scholar 

  10. Fakri N., Azrar L., Bakkali L.E.: Electroelastic behavior modeling of piezoelectric composite materials containing spatially oriented reinforcements. Int. J. Solids Struct. 40, 361–384 (2003)

    Article  MATH  Google Scholar 

  11. Wang Z., Zhu J., Jin X.Y., Chen W.Q., Zhang C.: Effective moduli of ellipsoidal particle reinforced piezoelectric composites with imperfect interfaces. J. Mech. Phys. Solids 65, 138–156 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang J.H., Kuo W.S.: Micromechanics determination of the effective properties of piezoelectric composites containing spatially oriented short fibers. Acta Mater. 44, 4889–4898 (1996)

    Article  Google Scholar 

  13. Kuo W.S., Huang J.H.: On the effective electroelastic properties of piezoelectric composites containing spatially oriented inclusions. Int. J. Solids Struct. 34, 2445–2461 (1997)

    Article  MATH  Google Scholar 

  14. Azrar L., Bakkali A., Aljinaidi A.A.: Frequency and time viscoelectroelastic effective properties modeling of heterogeneous and multi-coated piezoelectric composite materials. Compos. Struct. 113, 281–297 (2014)

    Article  Google Scholar 

  15. Dhala S., Ray M.C.: Micromechanics of piezoelectric fuzzy fiber-reinforced composite. Mech. Mater. 81, 1–17 (2015)

    Article  Google Scholar 

  16. Elouafi J., Azrar L., Aljinaidi A.A.: Closed-form expressions for the effective moduli of heterogeneous piezoelectric materials. Int. J. Solids Struct. 52, 19–32 (2015)

    Article  Google Scholar 

  17. Christensen R.M.: Mechanics of Composite Materials. Wiley, USA (1979)

    Google Scholar 

  18. Huang Y., Hu K.X., Chandra A.: A generalized self-consistent mechanics method for microcracked solids. J. Mech. Phys. Solids 42, 1273–1291 (1994)

    Article  MATH  Google Scholar 

  19. Jiang C.P., Tong Z.H., Cheung Y.K.: A generalized self-consistent method for piezoelectric fiber reinforced composites under antiplane shear. Mech. Mater. 33, 295–308 (2001)

    Article  Google Scholar 

  20. Jiang C.P., Cheung Y.K.: An exact solution for the three-phase piezoelectric cylinder model under antiplane shear and its applications to piezoelectric composites. Int. J. Solids Struct. 38, 4777–4796 (2001)

    Article  MATH  Google Scholar 

  21. Tong Z.H., Lo S.H., Jiang C.P., Cheung Y.K.: An exact solution for the three-phase thermo-electro-magneto-elastic cylinder model and its application to piezoelectric–magnetic fiber composites. Int. J. Solids Struct. 45, 5205–5219 (2008)

    Article  MATH  Google Scholar 

  22. Espinosa-Almeyda Y., Rodríguez-Ramos R., Guinovart-Díaz R., Bravo-Castillero J., López-Realpozo J.C., Camacho-Montes H., Sabina F.J., Lebon F.: Antiplane magneto–electro–elastic effective properties of three-phase fiber composites. Int. J. Solids Struct. 51, 3508–3521 (2014)

    Article  MATH  Google Scholar 

  23. Huang J.H., Liu Y.C.: Electroelastic response of a laminated composite plate with piezoelectric sensors and actuators. J. Eng. Mech. ASCE. 132, 889–897 (2006)

    Article  Google Scholar 

  24. Hashemi R., Weng G.J., Kargarnovin M.H., Shodja H.M.: Piezoelectric composites with periodic multi-coated inhomogeneities. Int. J. Solids Struct. 47, 2893–2904 (2010)

    Article  MATH  Google Scholar 

  25. Alibeigloo A.: Elasticity solution of functionally graded carbon-nanotube-reinforced composite cylindrical panel with piezoelectric sensor and actuator layers. Smart Mater. Struct. 22, 075013 (2013)

    Article  Google Scholar 

  26. Sabina F.J., Rodrıguez-Ramos R., Bravo-Castillero J., Guinovart-Dıaz R.: Closed-form expressions for the effective coefficients of a fibre-reinforced composite with transversely isotropic constituents. II: piezoelectric and hexagonal symmetry. J. Mech. Phys. Solids 49, 1463–1479 (2001)

    Article  MATH  Google Scholar 

  27. Berger H., Kari S., Gabbert U., Rodriguez-Ramos R., Guinovart R., Otero J.A., Bravo-Castillero J.: An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites. Int. J. Solids Struct. 42, 5692–5714 (2005)

    Article  MATH  Google Scholar 

  28. Iyer S., Venkatesh T.A.: Electromechanical response of (3-0, 3-1) particulate, fibrous, and porous piezoelectric composites with anisotropic constituents A model based on the homogenization method. Int. J. Solids Struct. 51, 1221–1234 (2014)

    Article  Google Scholar 

  29. Xu Y.L., Lo S.H., Jiang C.P., Cheung Y.K.: Electroelastic behavior of doubly periodic piezoelectric fiber composites under antiplane shear. Int. J. Solids Struct. 44, 976–995 (2007)

    Article  MATH  Google Scholar 

  30. Hashemi R., Kargarnovin M.H.: Overall electroelastic moduli of particulate piezocomposites with non-dilute BCC microstructure. Int. J. Mech. Sci. 53, 777–785 (2011)

    Article  Google Scholar 

  31. Yan P., Jiang C.P., Song F.: An eigenfunction expansion–variational method for the anti-plane electroelastic behavior of three-phase fiber composites. Mech. Mater. 43, 586–597 (2011)

    Article  Google Scholar 

  32. Guinovart-Díaz R., Yan P., Rodríguez-Ramos R., López-Realpozo J.C., Jiang C.P., Bravo-Castillero J., Sabina F.J.: Effective properties of piezoelectric composites with parallelogram periodic cells. Int. J. Eng. Sci. 53, 58–66 (2012)

    Article  Google Scholar 

  33. Yan P., Jiang C.P., Song F.: Unified series solution for the anti-plane effective magnetoelectroelastic moduli of three-phase fiber composites. Int. J. Solids Struct. 50, 176–185 (2013)

    Article  Google Scholar 

  34. Wong E.W., Sheehan P.E., Lieber C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)

    Article  Google Scholar 

  35. Mogilevskaya S.G., Crouch S.L., Stolarski H.K.: Multiple interacting circular nano-inhomogeneities with surface/interface effects. J. Mech. Phys. Solids 56, 2298–2327 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xiao J.H., Xu Y.L., Zhang F.C.: Size-dependent effective electroelastic moduli of piezoelectric nanocomposites with interface effect. Acta. Mech. 222, 59–67 (2011)

    Article  MATH  Google Scholar 

  37. Xiao J.H., Xu Y.L., Zhang F.C.: Evaluation of effective electroelastic properties of piezoelectric coated nano-inclusion composites with interface effect under antiplane shear. Int. J. Eng. Sci. 69, 61–68 (2013)

    Article  Google Scholar 

  38. Fang X.Q., Liu J.X., Gupta V.: Fundamental formulations and recent achievements in piezoelectric nano-structures: a review. Nanoscale 5, 1716–1726 (2013)

    Article  Google Scholar 

  39. Fang X.Q., Huang M.J., Liu J.X., Nie G.Q.: Electro-mechanical coupling properties of piezoelectric nanocomposites with coated elliptical nano-fibers under anti-plane shear. J. Appl. Phys. 115, 064306 (2014)

    Article  Google Scholar 

  40. Xiao J.H., Xu Y.L., Zhang F.C.: A generalized self-consistent method for nano composites accounting for fiber section shape under antiplane shear. Mech. Mater. 81, 94–100 (2015)

    Article  Google Scholar 

  41. Kundalwal S.I., Meguid S.A.: Micromechanics modelling of the effective thermoelastic response of nano-tailored composites. Eur. J. Mech. A-Solids 53, 241–253 (2015)

    Article  MathSciNet  Google Scholar 

  42. Gurtin M.E., Murdoch A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gurtin M.E., Murdoch A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  MATH  Google Scholar 

  44. Gurtin M.E., Weissmuller J., Larche F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78, 1093–1109 (1998)

    Article  Google Scholar 

  45. Tiersten H.F.: Linear Piezoelectric Plate Vibrations. Plenum Press, New York (1969)

    Book  Google Scholar 

  46. Chen T.Y.: Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects. Acta Mech. 196, 205–217 (2008)

    Article  MATH  Google Scholar 

  47. Chen T.Y., Chiu M.S., Weng C.N.: Derivation of the generalized Young–Laplace equation of curved interfaces in nanoscaled solids. J. Appl. Phys. 100, 074308 (2006)

    Article  Google Scholar 

  48. Muskhelishvili N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen (1953)

    MATH  Google Scholar 

  49. Duan H.L., Wang J., Huang Z.P., Karihaloo B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53, 1574–1596 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  50. Huang, G.Y., Yu, S.W.: Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Phys. Status Solidi B 243, R22–R24 (2006)

  51. Michalski P.J., Sai N., Mele E.J.: Continuum theory for nanotube piezoelectricity. Phys. Rev. Lett. 95, 116803 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. C. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J.H., Xu, Y.L. & Zhang, F.C. Generalized self-consistent electroelastic estimation of piezoelectric nanocomposites accounting for fiber section shape under antiplane shear. Acta Mech 227, 1381–1392 (2016). https://doi.org/10.1007/s00707-015-1558-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1558-1

Keywords

Navigation