Skip to main content
Log in

Size-dependent vibration of a microplate under the action of a moving load based on the modified couple stress theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This study deals with forced vibration analysis of a microplate subjected to a moving load. The formulation is developed based on the modified couple stress theory in conjunction with Kirchhoff–Love plate theory. The equations of motion of the problem are derived using Lagrange’s equations. In order to obtain the response of the microplate, the trial function for the dynamic deflection is expressed in the polynomial form. The equations of motion are solved by using the implicit time integration Newmark-β method, and then displacements, velocities and accelerations of the microplate at the considered point and time are determined. Five different sets of boundary condition are considered. For this purpose, boundary conditions are satisfied by adding some auxiliary functions to the trial functions. A parametric study is conducted to study the effects of the material length scale parameter, plate aspect ratio, boundary conditions and the moving load velocity on the dynamic response of the microplate. Also, in order to validate the present formulation and solution method, some comparisons with those available in the literature are performed. Good agreement is found. The results show that the dynamic deflections are significantly affected by the scale parameter and the load velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin R.M., Wang W.J.: Structural dynamics of microsystems-current state of research and future directions. Mech. Syst. Signal Process. 20, 1015–1043 (2006)

    Article  Google Scholar 

  2. Batra R.C., Porfiri M., Spinello D.: Review of modeling electrostatically microelectromechanical systems. Smart Mater. Struct. 16, R23–R31 (2007)

    Article  Google Scholar 

  3. Zhang X.M., Chau F.S., Quan C., Lam Y.L., Liu A.Q.: A study of the static characteristics of a torsional micromirror. Sens. Actuators A Phys. 90, 73–81 (2001)

    Article  Google Scholar 

  4. Scheeper P.R., Donk D., Bergveld P.: A review of silicon microphones. Sens. Actuators A 44, 1–11 (1994)

    Article  Google Scholar 

  5. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  6. Chong A.C.M., Yang F., Lam D.C.C., Tong P.: Torsion and bending of micron-scaled structures. J. Mater. Res. 16, 1052–1058 (2001)

    Article  Google Scholar 

  7. Stölken J.S., Evans A.G.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109–5115 (1998)

    Article  Google Scholar 

  8. Mindlin R.D., Tiersten H.: Effects of couple-stresses in linear elasticity. Arch. Rat. Mech. Anal. 11, 415–448 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  9. Koiter W.T.: Couple stresses in the theory of elasticity, I and II. Nederl. Akad. Wetensch. Proc. Ser. B. 67, 17–29 (1964)

    MATH  MathSciNet  Google Scholar 

  10. Toupin R.: Elastic materials with couple-stresses. Arch. Rat. Mech. Anal. 11, 385–414 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  11. Eringen A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  12. Yang F., Chong A.C.M., Lam D.C.C., Tong P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  13. Ma H.M., Gao X.L., Reddy J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Akgöz B., Civalek O.: Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int. J. Eng. Sci. 49, 1268–1280 (2011)

    Article  Google Scholar 

  15. Ke L.L., Wang Y.S.: Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Compos. Struct. 93, 342–350 (2011)

    Article  Google Scholar 

  16. Park S.K., Gao X.L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)

    Article  Google Scholar 

  17. Kahrobaiyan M.H., Asghari M., Rahaeifard M., Ahmadian M.T.: Investigation of the size-dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory. Int. J. Eng. Sci. 48, 1985–1994 (2010)

    Article  Google Scholar 

  18. Kong S.L., Zhou S.J., Nie Z.F., Wang K.: The size-dependent natural frequency of Bernoulli–Euler micro-beams. Int. J. Eng. Sci. 46, 427–437 (2008)

    Article  MATH  Google Scholar 

  19. Ke L.L., Wang Y.S., Wang Z.D.: Thermal effect on free vibration and buckling of size-dependent microbeams. Physica E Low Dimens. Syst. Nanostruct. 43, 1387–1393 (2011)

    Article  Google Scholar 

  20. Ke L.L., Wang Y.S.: Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory. Physica E Low Dimens. Syst. Nanostruct. 43, 1031–1039 (2011)

    Article  Google Scholar 

  21. Fu Y.M., Zhang J.: Modeling and analysis of microtubules based on a modified couple stress theory. Physica E Low Dimens. Syst. Nanostruct. 42, 1741–1745 (2010)

    Article  Google Scholar 

  22. Xia W., Wang L., Yin L.: Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration. Int. J. Eng. Sci. 48, 2044–2053 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tsiatas G.C.: A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids Struct. 46, 2757–2764 (2009)

    Article  MATH  Google Scholar 

  24. Akgöz B., Civalek O.: Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory. Mater. Des. 42, 164–171 (2012)

    Article  Google Scholar 

  25. Jomehzadeh E., Noori H.R., Saidi A.R.: The size-dependent vibration analysis of micro-plates based on a modified couple stress theory. Physica E Low Dimens. Syst. Nanostruct. 43, 877–883 (2011)

    Article  Google Scholar 

  26. Ma H.M., Gao X.L., Reddy J.N.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220, 217–235 (2011)

    Article  MATH  Google Scholar 

  27. Roque C.M.C., Fidalgo D.S., Ferreira A.J.M., Reddy J.N.: A study of a microstructure-dependent composite laminated Timoshenko beam using a modified couple stress theory and a meshless method. Compos. Struct. 96, 532–537 (2013)

    Article  Google Scholar 

  28. Chen S.H., Feng B.: Size effect in micro-scale cantilever beam bending. Acta Mech. 219, 291–307 (2011)

    Article  MATH  Google Scholar 

  29. Asghari M., Kahrobaiyan M.H., Nikfar M., Ahmadian M.T.: A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory. Acta Mech. 223, 1233–1249 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sharafkhani N., Rezazadeh G., Shabani R.: Study of mechanical behavior of circular FGM micro-plates under nonlinear electrostatic and mechanical shock loadings. Acta Mech. 223, 579–591 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Ke L.L., Wang Y.S., Yang J., Kitipornchai S.: Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory. J. Sound Vib. 331, 94–106 (2012)

    Article  Google Scholar 

  32. Roque C.M.C., Ferreira A.J.M., Reddy J.N.: Analysis of Mindlin micro plates with a modified couple stress theory and a meshless method. Appl. Math. Model. 37, 4626–4633 (2013)

    Article  MathSciNet  Google Scholar 

  33. Akgöz B., Civalek Ö.: Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mech. 224, 2185–2201 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  34. Tsiatas, G.C., Yiotis, A.J.: Size effect on the static, dynamic and buckling analysis of orthotropic Kirchhoff-type skew micro-plates based on a modified couple stress theory: comparison with the nonlocal elasticity theory. Acta Mech. (2014). doi:10.1007/s00707-014-1249-3

  35. Kahrobaiyan M.H., Asghari M., Ahmadian M.T.: A strain gradient Timoshenko beam element: application to MEMS. Acta Mech. 226, 505–525 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  36. Akgöz B., Civalek O.: A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech. 226, 2277–2294 (2015)

    Article  MathSciNet  Google Scholar 

  37. Chen W.J., Li L., Xu M.: A modified couple stress model for bending analysis of composite laminated beams with first order shear deformation. Compos. Struct. 93, 2723–2732 (2011)

    Article  Google Scholar 

  38. Ke L.L., Wang Y.S., Yang J., Kitipornchai S.: Nonlinear free vibration of size-dependent functionally graded microbeams. Int. J. Eng. Sci. 50, 256–267 (2012)

    Article  MathSciNet  Google Scholar 

  39. Ke L.L., Wang Y.S.: Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Compos. Struct. 93, 342–350 (2011)

    Article  Google Scholar 

  40. Reddy J.N.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59, 2382–2399 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  41. Asghari M., Ahmadian M.T., Kahrobaiyan M.H., Rahaeifard M.: On the size-dependent behavior of functionally graded micro-beams. Mater. Des. 31, 2324–2329 (2010)

    Article  Google Scholar 

  42. Thai H.T., Choi D.H.: Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory. Compos. Struct. 95, 142–153 (2013)

    Article  Google Scholar 

  43. Thai H.T., Kim S.E.: A size-dependent functionally graded Reddy plate model based on a modified couple stress theory. Compos. Part B Eng. 45, 1636–1645 (2013)

    Article  Google Scholar 

  44. Thai H.T., Vo T.P.: A size-dependent functionally graded sinusoidal plate model based on a modified couple stress theory. Compos. Struct. 96, 376–383 (2013)

    Article  Google Scholar 

  45. Şimşek M., Reddy J.N.: Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int. J. Eng. Sci. 64, 37–53 (2013)

    Article  Google Scholar 

  46. Şimşek M., Reddy J.N.: A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory. Compos. Struct. 101, 47–58 (2013)

    Article  Google Scholar 

  47. Reddy J.N., Kim J.: A nonlinear modified couple stress-based third-order theory of functionally graded plates. Compos. Struct. 94, 1128–1143 (2012)

    Article  Google Scholar 

  48. Gao X.-L., Huang J.X., Reddy J.N.: A non-classical third-order shear deformation plate model based on a modified couple stress theory. Acta Mech. 224, 2699–2718 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  49. Kim J., Reddy J.N.: Analytical solutions for bending, vibration, and buckling of FGM plates using a couple stress-based third-order theory. Compos. Struct. 103, 86–98 (2013)

    Article  Google Scholar 

  50. Fryba, L.: Vibration of Solids and Structures Under Moving Loads. Noordhoff International, Groningen (1972)

  51. Lee H.P.: Dynamic response of a beam with intermediate point constraints subject to a moving load. J. Sound Vib. 171, 361–368 (1994)

    Article  MATH  Google Scholar 

  52. Wang R.T.: Vibration of multi-span Timoshenko beams to a moving force. J. Sound Vib. 207, 731–742 (1997)

    Article  MATH  Google Scholar 

  53. Zheng D.Y., Cheung Y.K., Au F.T.K., Cheng Y.S.: Vibration of multi-span non-uniform beams under moving loads by using modified beam vibration functions. J. Sound Vib. 212, 455–467 (1998)

    Article  MATH  Google Scholar 

  54. Zhu X.Q., Law S.S.: Moving force identification on multi-span continuous bridge. J. Sound Vib. 228, 377–396 (1999)

    Article  Google Scholar 

  55. Abu-Hilal M., Mohsen M.: Vibration of beams with general boundary conditions due to moving harmonic load. J. Sound Vib. 232, 703–717 (2000)

    Article  Google Scholar 

  56. Michaltsos G.T.: Dynamic behaviour of a single-span beam subjected to loads moving with variable speeds. J. Sound Vib. 258, 359–372 (2002)

    Article  Google Scholar 

  57. Dugush Y.A., Eisenberger M.: Vibrations of non-uniform continuous beams under moving loads. J. Sound Vib. 254, 911–926 (2002)

    Article  Google Scholar 

  58. Abu-Hilal M.: Vibration of beams with general boundary conditions due to a moving random load. Arch. Appl. Mech. 72, 637–650 (2003)

    Article  MATH  Google Scholar 

  59. Garinei A.: Vibrations of simple beam-like modelled bridge under harmonic moving loads. Int. J. Eng. Sci. 44, 778–787 (2006)

    Article  MATH  Google Scholar 

  60. Kocatürk T., Şimşek M.: Vibration of viscoelastic beams subjected to an eccentric compressive force and a concentrated moving harmonic force. J. Sound Vib. 291, 302–322 (2006)

    Article  Google Scholar 

  61. Kocatürk T., Şimşek M.: Dynamic analysis of eccentrically prestressed viscoelastic Timoshenko beams under a moving harmonic load. Comput. Struct. 84, 2113–2127 (2006)

    Article  Google Scholar 

  62. Şimşek M., Kocatürk T.: Dynamic analysis of an eccentrically prestressed damped beam under a moving harmonic force using higher order shear deformation theory. ASCE J. Struct. Eng. 133, 1733–1741 (2007)

    Article  Google Scholar 

  63. Şimşek M., Kocatürk T.: Nonlinear dynamic analysis of an eccentrically prestressed damped beam under a concentrated moving harmonic load. J. Sound Vib. 320, 235–253 (2009)

    Article  Google Scholar 

  64. Şimşek M., Kocatürk T.: Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load. Compos. Struct. 90, 465–473 (2009)

    Article  Google Scholar 

  65. Khalili S.M.R., Jafari A.A., Eftekhari S.A.: A mixed Ritz-DQ method for forced vibration of functionally graded beams carrying moving loads. Compos. Struct. 92, 2497–2511 (2010)

    Article  Google Scholar 

  66. Şimşek M.: Vibration analysis of a functionally graded beam under a moving mass by using different beam theories. Compos. Struct. 92, 904–917 (2010)

    Article  Google Scholar 

  67. Şimşek M.: Non-Linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load. Compos. Struct. 92, 2532–2546 (2010)

    Article  Google Scholar 

  68. Şimşek M.: Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory. Int. J. Eng. Sci. 48, 1721–1732 (2010)

    Article  MATH  Google Scholar 

  69. Gbadeyan J.A., Oni S.T.: Dynamic behaviour of beams and rectangular plates under moving loads. J. Sound Vib. 182, 677–695 (1995)

    Article  MATH  Google Scholar 

  70. Shadnam M.R., Mofid M., Akin J.E.: On the dynamic response of rectangular plate, with moving mass. Thin-Walled Struct. 39, 797–806 (2001)

    Article  Google Scholar 

  71. Kim S.M., McCullough B.F.: Dynamic response of plate on viscous Winkler foundation to moving loads of varying amplitude. Eng. Struct. 25, 1179–1188 (2003)

    Article  Google Scholar 

  72. Lee S.-Y., Yhim S.-S.: Dynamic analysis of composite plates subjected to multi-moving loads based on a third order theory. Int. J. Solids Struct. 41, 4457–4472 (2004)

    Article  MATH  Google Scholar 

  73. Kim S.M.: Buckling and vibration of a plate on elastic foundation subjected to in-plane compression and moving loads. Int. J. Solids Struct. 41, 5647–5661 (2004)

    Article  MATH  Google Scholar 

  74. Kim S.M.: Influence of horizontal resistance at plate bottom on vibration of plates on elastic foundation under moving loads. Eng. Struct. 26, 519–529 (2004)

    Article  Google Scholar 

  75. Au F.T.K., Wang M.F.: Sound radiation from forced vibration of rectangular orthotropic plates under moving loads. J. Sound Vib. 281, 1057–1075 (2005)

    Article  Google Scholar 

  76. Gbadeyan J.A., Dada M.S.: Dynamic response of a Mindlin elastic rectangular plate under a distributed moving mass. Int. J. Mech. Sci. 48, 323–340 (2006)

    Article  MATH  Google Scholar 

  77. Wu J.-J.: Vibration analyses of an inclined flat plate subjected to moving loads. J. Sound Vib. 299, 373–387 (2007)

    Article  Google Scholar 

  78. Malekzadeh P., Fiouz A.R., Razi H.: Three-dimensional dynamic analysis of laminated composite plates subjected to moving load. Compos. Struct. 90, 105–114 (2009)

    Article  Google Scholar 

  79. Malekzadeh P., Haghighi M.R.G., Gholami M.: Dynamic response of thick laminated annular sector plates subjected to moving load. Compos. Struct. 92, 155–163 (2010)

    Article  Google Scholar 

  80. Ghafoori E., Asghari M.: Dynamic analysis of laminated composite plates traversed by a moving mass based on a first-order theory. Compos. Struct. 92, 1865–1876 (2010)

    Article  Google Scholar 

  81. Martinez-Rodrigo M.D., Museros P.: Optimal design of passive viscous dampers for controlling the resonant response of orthotropic plates under high-speed moving loads. J. Sound Vib. 330, 1328–1351 (2011)

    Article  Google Scholar 

  82. Vosoughi A.R., Malekzadeh P., Razi H.: Response of moderately thick laminated composite plates on elastic foundation subjected to moving load. Compos. Struct. 97, 286–295 (2013)

    Article  Google Scholar 

  83. Malekzadeh P., Monajjemzadeh S.M.: Dynamic response of functionally graded plates in thermal environment under moving load. Compos. Part B 45, 1521–1533 (2013)

    Article  Google Scholar 

  84. Nikkhoo A., Hassanabadi M.E., Azam S.E., Amiri J.V.: Vibration of a thin rectangular plate subjected to series of moving inertial loads. Mech. Res. Commun. 55, 105–113 (2014)

    Article  Google Scholar 

  85. Newmark N.M.: A method of computation for structural dynamics. ASCE Eng. Mech. Div. 85, 67–94 (1959)

    Google Scholar 

  86. Timoshenko S., Woinowsky-Krieger S.: Theory of Plates and Shells, 2nd edn. McGraw-Hill Company, New York (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Şimşek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şimşek, M., Aydın, M., Yurtcu, H.H. et al. Size-dependent vibration of a microplate under the action of a moving load based on the modified couple stress theory. Acta Mech 226, 3807–3822 (2015). https://doi.org/10.1007/s00707-015-1437-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1437-9

Keywords

Navigation