Skip to main content

Advertisement

Log in

Adaptive analysis of three-dimensional structures using an isogeometric control net refinement approach

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A new approach for the adaptive isogeometric solution of three-dimensional elasticity problems is presented. The error energy norms are calculated by isogeometric analysis, and the share of each control point from its vicinity is assigned by using Voronoi tessellation. Then, the net of control points is imagined as a hypothetical truss-like structure subject to artificial thermal gradients proportional to the control point errors. Analyzing this structure under the temperature variations, a new arrangement of control points is obtained. Repeating consequent isogeometric and thermo-elastic analyses will eventually lead to a better distribution of errors in the domain of problem and results in an optimal net of control points. To demonstrate the performance and efficiency of the proposed method, a few examples are presented. The obtained results indicate that this innovative approach is effective in reducing errors of three-dimensional problems and can be employed for improving solution accuracy in the context of isogeometric analysis approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hughes T.J.R., Cottrell J.A., Bazilevs Y.: Isogeometric analysis, CAA, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Piegl, L., Tiller, W.: The NURBS Book (Monographs in Visual Communication), 2nd ed. Springer, NewYork (1997)

  3. Auricchio F., Beirão da Veiga L.D., Hughes T.J.R., Reali A., Sangalli G.: Isogeometric collocation methods. Math. Models Methods Appl. Sci. 20(11), 2075–2107 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bazilevs Y., Beirãoda Veiga L., Cottrell J.A., Hughes T.J.R., Sangalli G.: Isogeometric analysis: approximation, stability and error estimates for h refined meshes. Math. Models Methods Appl. Sci. 16(7), 1031–1090 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beirão da Veiga, L., Buffa, A., Sangalli, G., Rivas, J.: Some estimates for h–p–k refinements in isogeometric analysis. Technical report, IMATI-CNR, Pavia (2009)

  6. Cottrell J.A., Hughes T.J.R., Reali A.: Studies of refinement and continuity in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 196, 4160–4183 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dörfel M., Jüttler B., Simeon B.: Adaptive isogeometric analysis by local h refinement with T-splines. Comput. Methods Appl. Mech. Eng. 199(5–8), 264–275 (2010)

    Article  MATH  Google Scholar 

  8. Evans J.A., Bazilevs Y., Babuška I., Hughes T.J.R.: n-Width, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method. Comput. Methods Appl. Mech. Eng. 198, 1726–1741 (2009)

    Article  MATH  Google Scholar 

  9. Hughes T.J.R., Reali A., Sangalli G.: Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS. Comput. Methods Appl. Mech. Eng. 197(49–50), 4104–4124 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hughes T.J.R., Reali A., Sangalli G.: Efficient quadrature for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 199(5–8), 301–313 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Auricchio F., Beirãoda Veiga L., Lovadina C., Reali A.: The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations. Comput. Methods Appl. Mech. Eng. 199(5–8), 314–323 (2010)

    Article  MATH  Google Scholar 

  12. Auricchio F., Beirãoda Veiga L., Buffa A., Lovadina C., Reali A., Sangalli G.: A fully “locking- ” isogeometric approach for plane linear elasticity problems: a stream function formulation. Comput. Methods Appl. Mech. Eng. 197(1–4), 160–172 (2007)

    Article  MATH  Google Scholar 

  13. Benson D.J., Bazilevs Y., Hsu M.C., Hughes T.J.R.: Isogeometric shell analysis: the Reissner–Mindlin shell. Comput. Methods Appl. Mech. Eng. 199(5–8), 276–289 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cottrell J.A., Reali A., Bazilevs Y., Hughes T.J.R.: Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195(41–43), 5257–5296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Elguedj T., Bazilevs Y., Calo V.M., Hughes T.J.R.: _B and _F projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements. Comput. Methods Appl. Mech. Eng. 197, 2732–2762 (2008)

    Article  MATH  Google Scholar 

  16. Lipton S., Evans J.A., Bazilevs Y., Elguedj T., Hughes T.J.R.: Robustness of isogeometric structural discretizations under severe mesh distortion. Comput. Methods Appl. Mech. Eng. 199(5–8), 357–373 (2010)

    Article  MATH  Google Scholar 

  17. Wall W.A., Frenzel M.A., Cyron Ch.: Isogeometric structural shape optimization. Comput. Methods Appl. Mech. Eng. 197(33–40), 2976–2988 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang Y., Bazilevs Y., Goswami S., Bajaj Ch.L., Hughes T.J.R.: Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Comput. Methods Appl. Mech. Eng. 196(29–30), 2943–2959 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sacks R., Eastman C. M., Lee G.: Parametric 3d modeling in building construction with examples from precast concrete. Autom. Constr. 13(3), 291–312 (2004)

    Article  Google Scholar 

  20. Shah J., Mäntyä M.: Parametric and Feature-Based CAD/CAM: Concepts, Techniques and Applications. Wiley, New York (1995)

    Google Scholar 

  21. Cohen E., Martin T., Kirby R., Lyche T., Riesenfeld R.: Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis. Comput. Methods Appl. Mech. Eng. 199, 334–356 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Beiroda Veiga L., Buffa A., Cho D., Sangalli G.: Isogeometric analysis using t-splines on two-patch geometries. Comput. Methods Appl. Mech. Eng. 200(21–22), 1787–1803 (2011)

    Article  Google Scholar 

  23. Bazilevs Y., Calo V.M., Cottrell J.A., Hughes T.J.R., Reali A., Scovazzi G.: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Eng. 197(1–4), 173–201 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bazilevs Y., Calo V.M., Hughes T.J.R., Zhang Y.: Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput. Mech. 43(1), 3–37 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bazilevs Y., Calo V.M., Zhang Y., Hughes T.J.R.: Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput. Mech. 38, 310–322 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bazilevs Y., Hughes T.J.R.: NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput. Mech. 43, 143–150 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gómez H., Calo V., Bazilevs Y., Hughes T.J.R.: Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput. Methods Appl. Mech. Eng. 197((49–50), 4333–4352 (2008)

    Article  MATH  Google Scholar 

  28. Buffa, A., Rivas, J., Sangalli, G., Vázquez, R.: Isogeometric analysis in electromagnetics: theory and testing. Technical Report 13PV10/13/0, IMATICNR (2010)

  29. Buffa A., Sangalli G., Vázquez R.: Isogeometric analysis in electromagnetics: B-splines approximation. Comput. Methods Appl. Mech. Eng. 199(17–20), 1143–1152 (2010)

    Article  MATH  Google Scholar 

  30. Zienkiewicz O.C.: The background of error estimation and adaptivity in finite element computations. Comput. Methods Appl. Mech. Eng. 195, 207–213 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zienkiewicz O.C., Zhu Z.: The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int. J. Numer. Methods Eng. 33, 1331–1364 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hassani B., Ganjali A., Tavakkoli S.M.: An isogeometrical approach to error estimation and stress recovery. Eur. J. Mech. 31, 101–109 (2012)

    Article  MATH  Google Scholar 

  33. McNeice G.M., Marcal P.V.: Optimization of finite element grids based on minimum potential energy. J. Eng. Ind. ASME 95(1), 186–190 (1973)

    Article  Google Scholar 

  34. Cavendish J.C.: Automatic triangulation of arbitrary planar domains for the finite element method. Int. J. Numer. Methods Eng. 8, 679–696 (1974)

    Article  MATH  Google Scholar 

  35. Lo S.H.: A new mesh generation scheme for arbitrary planar domains. Int. J. Numer. Methods Eng. 21, 1403–1426 (1985)

    Article  MATH  Google Scholar 

  36. Zhu Z., Zienkiewicz O.C., Hinton E., Wu J.: A new approach to the development of automatic quadrilateral mesh generation. Int. J. Numer. Methods Eng. 32, 849–866 (1991)

    Article  MATH  Google Scholar 

  37. Lang J., Cao W., Huang W., Russell R.D.: A two-dimensional moving finite element method with local refinement based on a posteriori error estimates. Appl. Numer. Math. 46, 75–94 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kjetil, A.J.: An adaptive isogeometric finite element analysis. M.S. thesis, Norwegian University of Science and Technology (2009)

  39. Scott M.A., Li X., Sederberg T.W., Hughes T.J.R.: Local refinement of analysis suitable T-splines. Comput. Methods Appl. Mech. Eng. 213, 206–222 (2012)

    Article  MathSciNet  Google Scholar 

  40. Wanga P., Xua J., Denga J., Chena F.: Adaptive isogeometric analysis using rational PHT-splines. Comput. Aided Des. 43, 1438–1448 (2011)

    Article  Google Scholar 

  41. Giannelli C., Juttler B., Speleers H.: Strongly stable bases for adaptively refined multilevel spline spaces. Adv. Comput. Math. 40, 459–490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mokris D., Juttler B., Giannelli C.: On the completeness of hierarchical tensor-product B-splines. J. Comput. Appl. Math. 271, 53–70 (2014)

    Article  MathSciNet  Google Scholar 

  43. Kuru G., Verhoosel C.V., Zee K.G., van der Brummelen E.H.: Goal-adaptive isogeometric analysis with hierarchical splines. Comput. Methods Appl. Mech. Eng. 270, 270–292 (2014)

    Article  MATH  Google Scholar 

  44. Sadd M.H.: ELASTICITY: Theory, Applications, and Numerics. Elsevier, Butterworth-Heinemann (2005)

    Google Scholar 

  45. Hinton E., Campbell J.: Local and global smoothing of discontinuous finite element functions using a least square method. Int. J. Numer. Methods Eng. 8, 461–480 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  46. Liu G.R., Dai K.Y., Nguyen T.T.: A smoothed finite element method for mechanics problems. Comput. Mech. 39, 859–877 (2007)

    Article  MATH  Google Scholar 

  47. Liu G.R., Nguyen-Xuan H., Nguyen-Thoi T.: A theoretical study on the smoothed FEM (S-FEM) models: properties, accuracy and convergence rates. Int. J. Numer. Methods Eng. 84, 1222–1256 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zienkiewicz O.C., Taylor R.L., Zhu Z.: The Finite Element Method, 6th ed. Elsevier, Butterworth-Heinemann (2005)

    Google Scholar 

  49. Barlow J.: Optimal stress locations in finite element models. Int. J. Numer. Methods Eng. 10, 243–251 (1976)

    Article  MATH  Google Scholar 

  50. Herrmann L.R.: Interpretation of finite element procedures in stress error minimization. Proc. Am. Soc. Civ. Eng. 98(EM5), 1331–1336 (1972)

    Google Scholar 

  51. Zienkiewicz O.C., Philips D.V.: An automatic mesh generation scheme for plane and curved surfaces by isoparametric coordinates. Int. J. Numer. Methods Eng. 3, 519–528 (1971)

    Article  MATH  Google Scholar 

  52. Haber R., Shephard M.S., Abel J.F., Gallagher R.H., Greenberg D.P.: A general two-dimensional graphical finite-element preprocessor utilizing discrete transfinite mappings. Int. J. Numer. Methods Eng. 17, 1015–1044 (1981)

    Article  MATH  Google Scholar 

  53. Bar-Yoseph P.Z., Mereu S., Chippada S., Kalro V.J.: Automatic monitoring of element shape quality in 2-D and 3-D computational mesh dynamics. Comput. Mech. 27, 378–395 (2001)

    Article  MATH  Google Scholar 

  54. Zeng D., Ethier C.R.: A semi-torsional spring analogy model for updating unstructured meshes in 3D moving domains. Finite Elem. Anal. Des. 41, 1118–1139 (2005)

    Article  Google Scholar 

  55. George P.L., Borouchaki H.: Delaunay Triangulation and Meshing: Application to Finite Elements. HERMES, Paris (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrooz Hassani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzakhani, A., Hassani, B. & Ganjali, A. Adaptive analysis of three-dimensional structures using an isogeometric control net refinement approach. Acta Mech 226, 3425–3449 (2015). https://doi.org/10.1007/s00707-015-1376-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1376-5

Keywords

Navigation