Skip to main content
Log in

Stability for manifolds of the equilibrium state of fractional Birkhoffian systems

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In the paper, we present a new stability theory of fractional dynamics, i.e., the stability for manifolds of equilibrium state of a fractional Birkhoffian system, in terms of Riesz derivatives, and explore its applications. For an autonomous fractional Birkhoffian system, the gradient representation and second-order gradient representation are studied, and the conditions under which the system can be considered as a gradient system and a second-order gradient system are given, respectively. Then, equilibrium equations, perturbation equations and first approximate equations are obtained, and the stability theorem for manifolds of equilibrium state of the general autonomous system is used to a fractional Birkhoffian system, and three criterions on the stability for manifolds of the equilibrium state of the system are investigated. As special cases of the fractional Birkhoffian method, the three criterions can also be applied to a traditional Birkhoffian system, a fractional Hamiltonian system and a classical Hamiltonian system, respectively. As applications, by using the fractional Birkhoffian method of this paper, we construct three kinds of fractional dynamical models, which include a four-dimensional fractional dynamical model, a fractional Hénon–Heiles model and a fractional Lorentz–Dirac model, and we explore the stability for manifolds of the equilibrium state of these models, respectively. This work provides a general method for studying the dynamic stability of an actual fractional dynamical model that is related to science and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978)

    Book  MATH  Google Scholar 

  2. Pauli W.: On the Hamiltonian structure of non-local field theories. IL Nuovo Cimento 10, 648–667 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  3. Olver P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1986)

    Book  MATH  Google Scholar 

  4. Feng K.: On Difference Schemes and Symplectic Geometry. Science Press, Beijing (1985)

    Google Scholar 

  5. Starosvetsky Y., Ben-Meir Y.: Nonstationary regimes of homogeneous Hamiltonian systems in the state of sonic vacuum. Phys. Rev. E 87, 062919 (2013)

    Article  Google Scholar 

  6. Banerjee R., Mukherjee P., Paul B.: New Hamiltonian analysis of Regge-Teitelboim minisuperspace cosmology. Phys. Rev. D 89, 043508 (2014)

    Article  Google Scholar 

  7. Zhu W.Q.: Dynamics and Control of Nonlinear Stochastic System: Hamilton Theory System Frame. Science Press, Beijing (2003)

    Google Scholar 

  8. Luo S.K., Zhang Y.F.: Advances in the Study of Dynamics of Constrained System. Science Press, Beijing (2008)

    Google Scholar 

  9. Luo S.K., Li Z.J., Li L.: A new Lie symmetrical method of finding a conserved quantity for a dynamical system in phase space. Acta Mech. 223, 2621–2632 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cai J.L.: Conformal invariance and conserved quantity of Hamilton system under second-class Mei symmetry. Acta Phys. Pol. A 117, 445–448 (2010)

    Google Scholar 

  11. Jia L.Q., Zheng S.W.: Mei symmetry of generalized Hamilton systems with additional terms. Acta Phys. Sin. 55, 3829–3832 (2006)

    MATH  MathSciNet  Google Scholar 

  12. Wang P., Fang J.H., Ding N., Zhang X.N.: Hojman exact invariants and adiabatic invariants of Hamilton system. Commun. Theor. Phys. 48, 996–998 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Luo S.K.: New types of the Lie symmetries and conserved quantities for a relativistic Hamilton system. Chin. Phys. Lett. 20, 597–599 (2003)

    Article  Google Scholar 

  14. Luo S.K.: Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian systems. Acta Phys. Sin. 52, 2941–2944 (2003)

    MATH  Google Scholar 

  15. Birkhoff G.D.: Dynamical Systems. AMS College Publisher, Providence (1927)

    MATH  Google Scholar 

  16. Santilli R.M.: Foundations of Theoretical Mechanics I. Springer, New York (1978)

    Book  MATH  Google Scholar 

  17. Santilli R.M.: Foundations of Theoretical Mechanics II. Springer, New York (1983)

    Book  MATH  Google Scholar 

  18. Mei F.X., Shi R.C., Zhang Y.F., Wu H.B.: Dynamics of Birkhoffian Systems. Beijing Institute of Technology, Beijing (1996)

    Google Scholar 

  19. Guo Y.X, Luo S.K., Shang M., Mei F.X.: Birkhoffian formulations of nonholonomic constrained systems. Rep. Math. Phys. 47, 313–322 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chen X.W.: Global Analysis for Birkhoffian Systems. Henan University Press, Kaifeng (2002)

    Google Scholar 

  21. Chen X.W., Li Y.M.: Equilibrium points and periodic orbits of higher order autonomous generalized Birkhoffian system. Acta Mech. 224, 1593–1599 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Chen X.W.: Closed orbits and limit cycles of second-order autonomous Birkhoffian systems. Chin. Phys. 12, 586–589 (2003)

    Article  Google Scholar 

  23. Wang P., Fang J.H., Wang X.M.: A generalized Mei conserved quantity and Mei symmetry of Birkhoff system. Chin. Phys. B 18, 1312–1315 (2009)

    Article  Google Scholar 

  24. Jiang W.A., Li L., Li Z.J., Luo S.K.: Lie symmetrical perturbation and a new type of non-Noether adiabatic invariants for disturbed generalized Birkhoffianian systems. Nonlinear Dyn. 67, 1075–1081 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Luo S.K.: First integrals and integral invariants of relativistic Birkhoffianian systems. Commun. Theor. Phys. 40, 133–136 (2003)

    Article  MATH  Google Scholar 

  26. Luo S.K.: Form invariance and Lie symmetries of rotational relativistic Birkhoffian system. Chin. Phys. Lett. 19, 449–451 (2002)

    Article  Google Scholar 

  27. Zhang Y.: A geometrical approach to Hojman theorem of a rotational relativistic Birkhoffianian system. Commun. Theor. Phys. 42, 669–671 (2004)

    Article  MATH  Google Scholar 

  28. Su H.L., Qin M.Z.: Symplectic schemes for Birkhoffian system. Commun. Theor. Phys. 41, 329–334 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Whittaker E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press, England (1904)

    MATH  Google Scholar 

  30. Bottema O.: On the small vibrations of nonholonomic systems. Proc. Kon. Ned. Akad. Wet. 52, 848–850 (1949)

    MATH  MathSciNet  Google Scholar 

  31. Aiserman M.A., Gantmacher F.R.: Stabilität der Gleichgewichtslage in einem nicht-holonomen System. ZAMM 37, 74–75 (1957)

    Article  Google Scholar 

  32. Neimark U.I., Fufaev N.A.: Dynamics of Nonholonomic Systems, pp. 241–296. Nauka, Moscow (1967)

    Google Scholar 

  33. Rumyantsev V.V.: On the stability of motion of nonholonomic systems. Appl. Math. Mech. 31, 260–271 (1967)

    Google Scholar 

  34. Karapetyan A.V., Rumyantsev V.V.: Stability of Conservative and Dissipational Systems, pp. 55–62. VINITI, Moscow (1983)

    Google Scholar 

  35. Mikhailov G.K., Parton V.Z.: Applied Mechanics: Soviet Reviews, pp. 61–91. Hemisphere Publishing Corporation, New York (1990)

    Google Scholar 

  36. Mei F.X., Shi R.C., Zhang Y.F., Zhu H.P.: Stability of motion of constrained mechanical systems. Beijing Institute of Technology Press, Beijing (1997)

    Google Scholar 

  37. Jiang W.A., Luo S.K.: Stability for manifolds of equilibrium state of generalized Hamiltonian system. Meccanica 47, 379–383 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  38. Mandelbrot B.B.: The Fractal Geometry of Nature. W.H. Freeman, New York (1982)

    MATH  Google Scholar 

  39. Riewe F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E. 53, 1890–1899 (1996)

    Article  MathSciNet  Google Scholar 

  40. Riewe F.: Mechanics with fractional derivatives. Phys. Rev. E. 55, 3581–3592 (1997)

    Article  MathSciNet  Google Scholar 

  41. Hilfer R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  42. Klimek M.: Fractional sequential mechanics model with symmetric fractional derivatives. Czech. J. Phys. 51, 1348–1354 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  43. Laskin N.: Fractional Schrödinger equation. Phys. Rev. E. 66, 056108 (2002)

    Article  MathSciNet  Google Scholar 

  44. Duarte F.B.M., Tenreiro Machado J.A.: Chaotic phenomena and fractional-order dynamics in the trajectory control of redundant manipulators. Nonlinear Dyn. 29, 315–3342 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  45. Agrawal O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  46. Cresson J.: Fractional Embedding of Differential Operators and Lagrangian Systems. IHÉS, Paris (2006)

    Google Scholar 

  47. Agrawal O.P.: Generalized variational problems and Euler-Lagrange equations. Comput. Math. Appl. 59, 1852–1864 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  48. Jesus I.S., Tenreiro Machado J.A.: Fractional control of heat diffusion systems. Nonlinear Dyn. 54, 263–282 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  49. Muslih S.I., Baleanu D.: Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives. J. Math. Anal. Appl. 304, 599–606 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  50. Tarasov V.E., Zaslavsky G.M.: Nonholonomic constraints with fractional derivatives. J. Phys. A Math. Gen. 39, 9797–9815 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  51. Tarasov V.E.: Fractional Dynamics. Higher Education Press, Beijing (2010)

    Book  MATH  Google Scholar 

  52. Chen X.W., Zhao G.L., Mei F.X.: A fractional gradient representation of the Poincaré equations. Nonlinear Dyn. 73, 579–582 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  53. Frederico S.F., Torres D.F.M.: Fractional optimal control in the sense of Caputo and the fractional Noether’s theorem. Int. Math. Forum. 3, 479–493 (2008)

    MATH  MathSciNet  Google Scholar 

  54. Solteiro Pires E.J., Tenreiro Machado J.A., de Moura Oliveira P.B., Boaventura C.J., Mendes L.: Particle swarm optimization with fractional-order velocity. Nonlinear Dyn. 61, 295–301 (2010)

    Article  MATH  Google Scholar 

  55. Tenreiro Machado, J.A.: Fractional order modelling of fractional-order holds. Nonlinear Dyn. (2012). doi:10.1007/s11071-012-0495-y

  56. Luo S.K., Li L.: Fractional generalized Hamiltonian mechanics and Poisson conservation law in terms of combined Riesz derivatives. Nonlinear Dyn. 73, 639–647 (2013)

    Article  MATH  Google Scholar 

  57. Luo S.K, Li L.: Fractional generalized Hamiltonian equations and its integral invariants. Nonlinear Dyn. 73, 339–346 (2013)

    Article  MATH  Google Scholar 

  58. Li L., Luo S.K.: Fractional generalized Hamiltonian mechanics. Acta Mech. 224, 1757–1771 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  59. Luo S.K., Li L., Xu Y.L.: Lie algebraic structure and generalized Poisson conservation law for fractional generalized Hamiltonian systems. Acta Mech. 225, 2653–2666 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  60. Luo, S.K., Xu, Y.L.: Fractional Birkhoffian mechanics. Acta Mech. (2014). doi:10.1007/s00707-014-1230-1

  61. Hénon M., Heiles C.: The applicability of the third integral of motion: some numerical experiments. Astron. J. 69, 73–79 (1964)

    Article  Google Scholar 

  62. Brack M.: Bifurcation cascades and self-similarity of periodic orbits with analytical scaling constants in Hénon–Heiles type potentials. Found. Phys. 31, 209–232 (2001)

    Article  MathSciNet  Google Scholar 

  63. Aguirre J., Vallejo J.C., Sanjua’n M.A.F.: Wada basins and chaotic invariant sets in the Hénon–Heiles system. Phys. Rev. E 64, 066208 (2001)

    Article  Google Scholar 

  64. Kupriyanov V.G.: Hamiltonian formulation and action principle for the Lorentz–Dirac system. Int. J. Theor. Phys. 45, 1129–1144 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  65. Gitman D.M., Kupriyanov V.G.: The action principle for a system of differential equations. J. Phys. A. Math. Theor. 40, 10071 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  66. Ding G.T.: Analytical mechanics representations of a moving charged particle in a magnetic field with radiation friction. Acta Phys. Sin. 61, 020204 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Kai Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, JM., Xu, YL. & Luo, SK. Stability for manifolds of the equilibrium state of fractional Birkhoffian systems. Acta Mech 226, 2135–2146 (2015). https://doi.org/10.1007/s00707-015-1307-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1307-5

Keywords

Navigation