Skip to main content
Log in

A meshless local Petrov–Galerkin method for nonlinear dynamic analyses of hyper-elastic FG thick hollow cylinder with Rayleigh damping

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper is devoted to the geometrically nonlinear analysis of a functionally graded (FG) thick hollow cylinder with Rayleigh damping. The hollow cylinder is subjected to axisymmetric mechanical shock loading on its bounding surfaces. First, the meshless local Petrov–Galerkin (MLPG) method is developed for geometrically nonlinear problems based on total Lagrangian approach. During this process, the local integral equations are obtained using the weak formulation on local sub-domains for the set of governing equations by employing a Heaviside test function. The radial point interpolation method is used to approximate the field variables in terms of nodal displacements. The iterative Newmark/Newton–Raphson method is employed to solve the system of resulting nonlinear equations in suitable time steps. Because of large deformations compared to linear elastic materials, the hyper-elastic neo-Hookean model is considered for the problem. The hollow cylinder is supposed to be in plane strain condition. The properties of the FG cylinder are varied in the thickness direction using the volume fraction that is an exponential function of radius. At the end, to prove the robustness of the proposed method, several numerical tests are performed and effects of relative parameters on the dynamic behavior of the cylinder for various kinds of FGMs are discussed in detail. Findings demonstrate the effectiveness of the presented MLPG method for large deformation problems because of vanishing of the mesh distortion. This paper furnishes a ground to develop the MLPG method for dynamic large deformation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu M.B., Liu G.R., Lam K.Y., Zong Z.: Smoothed particle hydrodynamics for numerical simulation of underwater explosion. Comput. Mech. 30, 1475–1480 (2003)

    Google Scholar 

  2. Liu, W.K., Li, S.H., Belytschko, T.: Moving least-square reproducing kernelmethods (I) methodology and convergence. Comput. Methods Appl. Mech. Eng. 143, 113–154 (1997)

  3. Liu G.R., Gu Y.T.: A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids. J. Sound Vib. 246, 29–46 (2001)

    Article  Google Scholar 

  4. Atluri S.N., Cho J.Y., Kim H.G.: Analysis of thin beams, using the meshless local Petrov–Galerkin method, with generalized moving least squares interpolations. Comput. Mech. 24, 334–347 (1999)

    Article  MATH  Google Scholar 

  5. Lam K.Y., Wang Q.X., Li H.: A novel meshless approach—local Kriging (LoKriging) method with two-dimensional structural analysis. Comput. Mech. 33, 1475–1480 (2004)

    Article  MathSciNet  Google Scholar 

  6. Liszka, T., Orkisz, J.: The finite difference method at arbitrary irregular grids and its application in applied mechanics. Comput. Struct. 11, 83–95 (1980)

  7. Belytschko T., Krysl P., Krongauz Y.: A three-dimensional explicit element-free Galerkin method. Int. J. Numer. Methods Fluids 24, 1253–1270 (1997)

    Article  MATH  Google Scholar 

  8. Atluri S.N., Zhu T.: A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22, 117–127 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Sladek J., Stanak P., Han Z.D., Sladek V., Atluri S.N.: Applications of the MLPG method in engineering & sciences. CMES Comput. Model. Eng. Sci. 92, 423–475 (2013)

    Google Scholar 

  10. Sladek J., Sladek V., Zhang C.: Application of meshless local Petrov–Galerkin (MLPG) method to elasto-dynamic problems in continuously non-homogeneous solids. CMES Comput. Model. Eng. Sci. 4, 637–648 (2003)

    MATH  Google Scholar 

  11. Sladek J., Sladek V., Zhang C.: An advanced numerical method for computing elasto-dynamic fracture parameters in functionally graded materials. Comput. Mater. Sci. 32, 532–543 (2005)

    Article  Google Scholar 

  12. Sladek J., Sladek V., Solek P., Saez A.: Dynamic 3D axisymmetric problems in continuously non-homogeneous piezoelectric solids. Int. J. Solids Struct. 45, 4523–4542 (2008)

    Article  MATH  Google Scholar 

  13. Hosseini S.M., Akhlaghi M., Shakeri M.: Dynamic response and radial wave propagation velocity in thick hollow cylinder made of functionally graded materials. Eng. Comput. 24, 288–303 (2007)

    Article  MATH  Google Scholar 

  14. Liu G.R., Han X., Lam K.Y.: Stress waves in functionally gradient materials and its use for material characterization. Compos. Part B Eng. 30, 383–394 (1999)

    Article  Google Scholar 

  15. Foroutan M., Moradi-Dastjerdi R.: Dynamic analysis of functionally graded material cylinders under an impact load by a mesh-free method. Acta Mech. 219, 281–290 (2011)

    Article  MATH  Google Scholar 

  16. Hosseini S.M., Abolbashari M.H.: General analytical solution for elastic radial wave propagation and dynamic analysis of functionally graded thick hollow cylinders subjected to impact loading. Acta Mech. 212, 1–19 (2010)

    Article  MATH  Google Scholar 

  17. Hosseini S.M.: Shock-induced thermo-elastic wave propagation analysis in a thick hollow cylinder without energy dissipation using mesh-free generalized finite difference (GFD) method. Acta Mech. 224, 465–478 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hosseini S.M., Shahabian F.: Stochastic assessment of thermo-elastic wave propagation in functionally graded materials (FGMs) with Gaussian uncertainty in constitutive mechanical properties. J. Therm. Stress. 34, 1071–1099 (2011)

    Article  Google Scholar 

  19. Yang Y., Kou K.P., Iu V.P., Lam C.C., Zhang C.: Free vibration analysis of two-dimensional functionally graded structures by a meshfree boundary-domain integral equation method. Compos. Struct. 110, 342–353 (2014)

    Article  Google Scholar 

  20. Zhang C., Sladek J., Sladek V.: Crack analysis in unidirectionally and bidirectionally functionally graded materials. Int. J. Fract. 129, 385–406 (2004)

    Article  MATH  Google Scholar 

  21. Moussavinezhad, S.M., Shahabian, F., Hosseini, S.M.: Two-dimensional elasticwave propagation analysis in finite length FG thick hollow cylinders with 2D nonlinear grading patterns using MLPG method. CMES Comput.Model. Eng. Sci. 91, 177–204 (2013)

  22. Soares D., Sladek J., Sladek V.: Non-linear dynamic analyses by meshless local Petrov–Galerkin formulations. Int. J. Numer. Methods Eng. 81, 1687–1699 (2010)

    MATH  MathSciNet  Google Scholar 

  23. Soares D., Sladek J., Sladek V.: Dynamic analysis by meshless local Petrov–Galerkin formulations considering a time-marching scheme based on implicit Green’s functions. CMES Comput. Model. Eng. Sci. 50, 115–140 (2009)

    MATH  MathSciNet  Google Scholar 

  24. Zhang A., Ming F., Cao X.: Total Lagrangian particle method for the large-deformation analyses of solids and curved shells. Acta Mech. 225, 253–275 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhe, P., Zhang, L.W., Liew, K.M.: Geometrically nonlinear thermo-mechanical analysis of moderately thick functionally graded plates using a local Petrov–Galerkin approach with moving Kriging interpolation. Compos. Struct. 107, 298–314 (2014)

  26. Gu Y.T., Wang Q.X., Lam K.Y.: A meshless local Kriging method for large deformation analyses. Comput. Methods Appl. Mech. Eng. 196, 1673–1684 (2007)

    Article  MATH  Google Scholar 

  27. Moosavi, M.R., Khelil, A.: Isogeometric meshless finite volume method in nonlinear elasticity. Acta Mech. 225, 145–163 (2014)

  28. Zienkiewicz O.C., Taylor R.L.: The Finite Element Method. McGraw-Hill, New York (2000)

    MATH  Google Scholar 

  29. Amabili M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  30. Crisfield M.A.: Nonlinear Finite Element Analysis of Solids and Structures. Wiley, New York (1991)

    MATH  Google Scholar 

  31. Chopra A.K.: Dynamics of Structures: Theory and Applications to Earthquake Engineering. Prentice Hall, New Jersey (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Shahabian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadiri Rad, M.H., Shahabian, F. & Hosseini, S.M. A meshless local Petrov–Galerkin method for nonlinear dynamic analyses of hyper-elastic FG thick hollow cylinder with Rayleigh damping. Acta Mech 226, 1497–1513 (2015). https://doi.org/10.1007/s00707-014-1266-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1266-2

Keywords

Navigation