Skip to main content
Log in

A novel updated Lagrangian complementary energy-based formulation for the elastica problem: force-based finite element model

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper addresses the development of a novel updated Lagrangian variational formulation and its associated finite element model for the geometrically nonlinear quasi-static analysis of cantilever beams. The formulation is based on an incremental complementary energy principle. The proposed finite element model only contains nodal bending moments as degrees of freedom. The model is used for the analysis of problems modeled by the so-called elastica theory. Numerical solutions satisfying all equilibrium equations in a strong sense can be obtained for arbitrarily large displacements and rotations. A Newton–Raphson method is adopted to trace the post-buckling response. Numerical results are presented and compared with those produced by the standard total Lagrangian two-node displacement-based finite element model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antman S.S.: Nonlinear Problems of Elasticity, 2nd edn. Springer, New York (1995)

    Book  MATH  Google Scholar 

  2. Atanackovic T.M., Spasic D.T.: A model for plane elastica with simple shear deformation pattern. Acta Mech. 104, 241–253 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Backlund J.: Large deflection analysis of elasto-plastic beams and frames. Int. J. Mech. Sci. 18, 269–277 (1976)

    Article  Google Scholar 

  4. Bathe K.J.: Finite Element Procedures. Prentice-Hall, New Jersey (1996)

    Google Scholar 

  5. Bathe K.J., Bolourchi S.: Large displacement analysis of three-dimensional beam structures. Int. J. Numer. Methods Eng. 14, 961–986 (1979)

    Article  MATH  Google Scholar 

  6. Bisshopp K.E., Drucker D.C.: Large deflections of cantilever beams. Q. Appl. Math. 3, 272–275 (1945)

    MATH  MathSciNet  Google Scholar 

  7. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, 15th edn. Springer Series in Computational Mathematics. Springer, London (1991)

  8. Campanile L.F., Hasse A.: A simple and effective solution to the elastica problem. J. Mech. Eng. Sci. 222, 2513–2516 (2008)

    Article  Google Scholar 

  9. Carol I., Murcia J.: Nonlinear time-dependent analysis of planar frames using an ‘exact’ formulation—I: theory. Comput. Struct. 33, 79–87 (1989)

    Article  MATH  Google Scholar 

  10. Chan T.F., Kang S.H., Shen J.: Euler’s elastica and curvature-based inpainting. SIAM J. Appl. Math. 63, 564–592 (2002)

    MATH  MathSciNet  Google Scholar 

  11. Chen L.: An integral approach for large deflection cantilever beams. Int. J. Non-Linear Mech. 45, 301–305 (2010)

    Article  Google Scholar 

  12. Crisfield M.A.: Non-linear Finite Element Analysis of Solids and Structures. Volume 1: Essentials. Wiley, New York (1991)

    Google Scholar 

  13. de Fraeijs Veubeke, B.: Upper and lower bounds in matrix structural analysis. In: AGARDograph 72: Matrix Methods of Structural Analysis. Pergamon Press, London (1964)

  14. de Fraeijs Veubeke, B.: Stress analysis. In: Displacement and Equilibrium Models in the Finite Element Method, pp. 145–197. Wiley, New York (1965)

  15. Debongnie J.F., Zhong H.G., Beckers P.: Dual analysis with general boundary conditions. Comput. Methods Appl. Mech. Eng. 122, 183–192 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dedè L., Santos H.A.F.A.: B-spline goal-oriented error estimators for geometrically nonlinear rods. Comput. Mech. 49, 35–52 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Euler, L.: Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes (appendix, de curvis elasticis). Lausanne und Genf, 1744 (1774)

  18. Golley B.W.: The finite element solution to a class of elastica problems. Comput. Methods Appl. Mech. Eng. 26, 159–168 (1984)

    Article  Google Scholar 

  19. Golley B.W.: The solution of open and closed elasticas using intrinsic coordinate finite elements. Comput. Methods Appl. Mech. Eng. 146, 127–134 (1997)

    Article  MATH  Google Scholar 

  20. Goss V.G.A.: The history of the planar elastica: insights into mechanics and scientific method. Sci. Educ. 18, 1057–1082 (2009)

    Article  Google Scholar 

  21. Hughes T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover, New York (2000)

    Google Scholar 

  22. Humer A.: Elliptic integral solution of the extensible elastica with a variable length under a concentrated force. Acta Mech. 222, 209–223 (2011)

    Article  MATH  Google Scholar 

  23. Humer A.: Exact solutions for the buckling and postbuckling of shear-deformable beams. Acta Mech. 224, 1493–1525 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kimia B.B., Frankel I., Popescu A.-M.: Euler spiral for shape completion. Int. J. Comput. Vis. 54, 159–182 (2003)

    Article  MATH  Google Scholar 

  25. Lan P., Shabana A.A.: Integration of b-spline geometry and ancf finite element analysis. Nonlinear Dyn. 61, 193–206 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lee K.: Post-buckling of uniform cantilever column under a combined load. Int. J. Non-linear Mech. 36, 813–816 (2001)

    Article  MATH  Google Scholar 

  27. Levyakov S.V., Kuznetsov V.V.: Stability analysis of planar equilibrium configurations of elastic rods subjected to end loads. Acta Mech. 211, 73–87 (2010)

    Article  MATH  Google Scholar 

  28. Love A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge University Press, Cambridge (1906)

    Google Scholar 

  29. Mikata Y.: Complete solution of elastica for a clamped-hinged beam, and its applications to a carbon nanotube. Acta Mech. 190, 133–150 (2007)

    Article  MATH  Google Scholar 

  30. Mumford, D.: Algebraic Geometry and its Applications, Elastica and Computer Vision, pp. 491–506. New York (1994)

  31. Mutyalarao M., Bharathi D., Rao B.N.: On the uniqueness of large deflections of a uniform cantilever beam under a tip-concentrated rotational load. Int. J. Non-linear Mech. 45, 433–441 (2010)

    Article  Google Scholar 

  32. Nallathambi A.K., Rao C.L., Srinivasan S.M.: Large deflection of constant curvature cantilever beam under follower load. Int. J. Mech. Sci. 52, 440–445 (2010)

    Article  Google Scholar 

  33. Neuenhofer A., Filippou F.C.: Geometrically nonlinear flexibility-based frame finite element. J. Struct. Eng. ASCE 124, 704–711 (1998)

    Article  Google Scholar 

  34. Petrolito J., Legge K.A.: Unified nonlinear elastic frame analysis. Comput. Struct. 60, 21–30 (1996)

    Article  MATH  Google Scholar 

  35. Petrolito J., Legge K.A.: Nonlinear analysis of frames with curved members. Comput. Struct. 79, 727–735 (2001)

    Article  Google Scholar 

  36. Saalschutz, L.: Der belastete Stab unter Einwirkung einer seitlichen Kraft: Auf Grundlage des strengen Ausdrucks für den Krümmungsradius. Teubner (1880)

  37. Santos H.A.F.A.: Complementary-energy methods for geometrically non-linear structural models: an overview and recent developments in the analysis of frames. Arch. Comput. Methods Eng. 18, 405–440 (2011)

    Article  Google Scholar 

  38. Santos H.A.F.A.: Variationally consistent force-based finite element method for the geometrically non-linear analysis of Euler–Bernoulli framed structures. Finite Elem. Anal. Des. 53, 24–36 (2012)

    Article  MathSciNet  Google Scholar 

  39. Santos H.A.F.A., Moitinho de Almeida J.P.: Equilibrium-based finite element formulation for the geometrically exact analysis of planar framed structures. J. Eng. Mech. 136, 1474–1490 (2010)

    Article  Google Scholar 

  40. Santos H.A.F.A., Almeida Paulo C.I.: On a pure complementary energy principle and a force-based finite element formulation for non-linear elastic cables. Int. J. Non-Linear Mech. 46, 395–406 (2011)

    Article  Google Scholar 

  41. Santos H.A.F.A., Pimenta P.M., Moitinho de Almeida J.P.: A hybrid-mixed finite element formulation for the geometrically exact analysis of three-dimensional framed structures. Comput. Mech. 48, 591–613 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  42. Schmidt W.F.: Finite element solutions for the elastica. J. Eng. Mech. Div. 103, 1171–1175 (1977)

    Google Scholar 

  43. Sreekumar, M., Nagarajan, T., Singaperumal, M.: Design of a shape memory alloy actuated compliant smart structure: elastica approach. J. Mech. Des. 131, 061008 (2009)

  44. Tang T., Jagota A., Hui C.-Y.: Adhesion between single-walled carbon nanotubes. J. Appl. Phys. 97, 074304–074304–6 (2005)

    Article  Google Scholar 

  45. Timoshenko S.P.: History of Strength of Materials. McGraw-Hill, New York (1953)

    Google Scholar 

  46. van der Heijden G.H.M., Neukirch S., Goss V.G.A., Thompson J.M.T.: Instability and self-contact phenomena in the writhing of clamped rods. Int. J. Mech. Sci. 45, 161–196 (2003)

    Article  MATH  Google Scholar 

  47. Washizu K.: Variational Methods in Elasticity and Plasticity, 3rd edn. Pergamon Press, Oxford (1982)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. F. A. Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, H.A.F.A. A novel updated Lagrangian complementary energy-based formulation for the elastica problem: force-based finite element model. Acta Mech 226, 1133–1151 (2015). https://doi.org/10.1007/s00707-014-1237-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1237-7

Keywords

Navigation