Skip to main content
Log in

Numerical investigation of nanoindentation size effect using micropolar theory

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, we investigate the properties of micropolar continua in the conical indentation of elastic–plastic material. The micropolar formulation is derived in axisymmetric condition, and a finite element model is implemented for the elastic–plastic contact solution of the indentation problem. It has been shown that micropolar description of the material is consistent with the Nix–Gao indentation size effect model at high indentation depth. The size effects obtained from micropolar continua are governed by hardening rules and yield function rather than the material elasticity. The numerical simulations have been verified by the experimental results coming from the open literature. Moreover, it has been shown that the proposed micropolar model allows the prediction of indentation size effect for both micro- and nanoindentations at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gouldstone A., Chollacoop N., Dao M., Li J., Minor A.M., Shen Y.-L.: Indentation across size scales and disciplines: recent developments in experimentation and modeling. Acta Mater. 55(12), 4015–4039 (2007)

    Article  Google Scholar 

  2. Pharr G.M., Herbert E.G., Gao Y.: The indentation size effect: a critical examination of experimental observations and mechanistic interpretations. Ann. Rev. Mater. Res. 40, 271–292 (2010)

    Article  Google Scholar 

  3. Nix W.D., Gao H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411–425 (1998)

    Article  MATH  Google Scholar 

  4. Ma Q., Clarke D.R.: Size dependent hardness of silver single crystals. J. Mater. Res. 10(4), 853–863 (1995)

    Article  Google Scholar 

  5. McElhaney K., Vlassak J., Nix W.: Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J. Mater. Res. 13(5), 1300–1306 (1998)

    Article  Google Scholar 

  6. Lim Y.Y., Chaudhri M.M.: The effect of the indenter load on the nanohardness of ductile metals: an experimental study on polycrystalline work-hardened and annealed oxygen-free copper. Philos. Mag. A 79(12), 2979–3000 (1999)

    Article  Google Scholar 

  7. Swadener J., George E., Pharr G.: The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 50(4), 681–694 (2002)

    Article  MATH  Google Scholar 

  8. Feng G., Nix W.D.: Indentation size effect in MgO. Scripta Mater. 51(6), 599–603 (2004)

    Article  Google Scholar 

  9. Huang Y., Zhang F., Hwang K., Nix W., Pharr G., Feng G.: A model of size effects in nano-indentation. J. Mech. Phys. Solids 54(8), 1668–1686 (2006)

    Article  MATH  Google Scholar 

  10. Qiao X.G., Starink M.J., Gao N.: The influence of indenter tip rounding on the indentation size effect. Acta Mater. 58(10), 3690–3700 (2010)

    Article  Google Scholar 

  11. Abu Al-Rub R.K., Voyiadjis G.Z.: Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments. Int. J. Plast. 20(6), 1139–1182 (2004)

    Article  Google Scholar 

  12. Abu Al-Rub R.K.: Prediction of micro and nanoindentation size effect from conical or pyramidal indentation. Mech. Mater. 39(8), 787–802 (2007)

    Article  Google Scholar 

  13. Fleck N., Hutchinson J.: Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)

    Article  Google Scholar 

  14. Fleck N., Hutchinson J.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49(10), 2245–2271 (2001)

    Article  MATH  Google Scholar 

  15. Danas K., Deshpande V.S., Fleck N.: Size effects in the conical indentation of an elasto-plastic solid. J. Mech. Phys. Solids 60(9), 1605–1625 (2012)

    Article  MathSciNet  Google Scholar 

  16. Guha, S., Sangal, S., Basu, S.: Finite element studies on indentation size effect using a higher order strain gradient theory. Int. J. Solids Struct. 50(6), 863–875 (2013)

    Google Scholar 

  17. Gao H., Huang Y., Nix W., Hutchinson J.: Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Solids 47(6), 1239–1263 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Saha R., Xue Z., Huang Y., Nix W.D.: Indentation of a soft metal film on a hard substrate: strain gradient hardening effects. J. Mech. Phys. Solids 49(9), 1997–2014 (2001)

    Article  MATH  Google Scholar 

  19. Hwang K., Jiang H., Huang Y., Gao H., Hu N.: A finite deformation theory of strain gradient plasticity. J. Mech. Phys. Solids 50(1), 81–99 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gao H., Huang Y.: Taylor-based nonlocal theory of plasticity. Int. J. Solids Struct. 38(15), 2615–2637 (2001)

    Article  MATH  Google Scholar 

  21. Qu S., Huang Y., Pharr G., Hwang K.: The indentation size effect in the spherical indentation of Iridium: A study via the conventional theory of mechanism-based strain gradient plasticity. Int. J. Plast. 22(7), 1265–1286 (2006)

    Article  MATH  Google Scholar 

  22. Voyiadjis G.Z., Peters R.: Size effects in nanoindentation: an experimental and analytical study. Acta Mech. 211(1–2), 131–153 (2010)

    Article  MATH  Google Scholar 

  23. Grammenoudis P., Tsakmakis C.: Isotropic hardening in micropolar plasticity. Arch. Appl. Mech. 79(4), 323–334 (2009)

    Article  MATH  Google Scholar 

  24. Sulem J., Cerrolaza M.: Finite element analysis of the indentation test on rocks with microstructure. Comput. Geotech. 29(2), 95–117 (2002)

    Article  Google Scholar 

  25. Zhang Z., Liu Z., Liu X., Gao Y., Zhuang Z.: Wedge indentation of a thin film on a substrate based on micromorphic plasticity. Acta Mech. 221(1–2), 133–145 (2011)

    Article  MATH  Google Scholar 

  26. Green A.E., Naghdi P.M., Osborn R.: Theory of an elastic–plastic Cosserat surface. Int. J. Solids Struct. 4(9), 907–927 (1968)

    Article  MATH  Google Scholar 

  27. Lippmann H.: Eine Cosserat-Theorie des plastischen Fließens. Acta Mech. 8(3–4), 255–284 (1969)

    Article  MATH  Google Scholar 

  28. Besdo P.-D.D.-I.D.: Ein Beitrag zur nichtlinearen Theorie des Cosserat-Kontinuums. Acta Mech. 20(1–2), 105–131 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  29. Muhlhaus H., Vardoulakis I.: The thickness of shear bands in granular materials. Geotechnique 37(3), 271–283 (1987)

    Article  Google Scholar 

  30. de Borst R.: A generalisation of J2-flow theory for polar continua. Comput. Methods Appl. Mech. Eng. 103(3), 347–362 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  31. Forest S., Cailletaud G., Sievert R.: A Cosserat theory for elastoviscoplastic single crystals at finite deformation. Arch. Mech. 49, 705–736 (1997)

    MATH  MathSciNet  Google Scholar 

  32. Sharbati E., Naghdabadi R.: Computational aspects of the Cosserat finite element analysis of localization phenomena. Comput. Mater. Sci. 38(2), 303–315 (2006)

    Article  Google Scholar 

  33. Grammenoudis P., Tsakmakis C.: Micropolar plasticity theories and their classical limits, Part I: Resulting model. Acta Mech. 189(3–4), 151–175 (2007)

    Article  MATH  Google Scholar 

  34. Grammenoudis P., Sator C., Tsakmakis C.: Micropolar plasticity theories and their classical limits, Part II: Comparison of responses predicted by the limiting and a standard classical model. Acta Mech. 189(3–4), 177–191 (2007)

    Article  MATH  Google Scholar 

  35. Altenbach J., Altenbach H., Eremeyev V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)

    Article  MATH  Google Scholar 

  36. Ramezani S., Naghdabadi R., Sohrabpour S.: An additive theory for finite elastic–plastic deformations of the micropolar continuous media. Acta Mech. 206(1–2), 81–93 (2009)

    Article  MATH  Google Scholar 

  37. Khoei A., Yadegari S., Biabanaki S.: 3D finite element modeling of shear band localization via the micro-polar Cosserat continuum theory. Comput. Mater. Sci. 49(4), 720–733 (2010)

    Article  Google Scholar 

  38. Zhang H., Wang H., Wriggers P., Schrefler B.: A finite element model for contact analysis of multiple Cosserat bodies. Comput. Mech. 36(6), 444–458 (2005)

    Article  MATH  Google Scholar 

  39. Zhang H., Xie Z., Chen B., Xing H.: A finite element model for 2D elastic–plastic contact analysis of multiple Cosserat materials. Eur. J. Mechanics-A/Solids 31(1), 139–151 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  40. Fischer-Cripps A.C.: Nanoindentation, vol. 1. Springer, Berlin (2011)

    Book  Google Scholar 

  41. Grammenoudis P., Tsakmakis C.: Predictions of microtorsional experiments by micropolar plasticity. Proc. R. Soc. A Math. Phys. Eng. Sci. 461(2053), 189–205 (2005)

    Article  Google Scholar 

  42. Eringen A.C.: Nonlocal Continuum Field Theories. Springer, Berlin (2002)

    MATH  Google Scholar 

  43. Neff P., Chełmiński K., Müller W., Wieners C.: A numerical solution method for an infinitesimal elasto-plastic Cosserat model. Math. Models Methods Appl. Sci. 17(08), 1211–1239 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manouchehr Salehi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, S.H., Salehi, M. Numerical investigation of nanoindentation size effect using micropolar theory. Acta Mech 225, 3365–3376 (2014). https://doi.org/10.1007/s00707-014-1116-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1116-2

Keywords

Navigation