Skip to main content
Log in

A three-dimensional model for flow pumping in a microchannel inspired by insect respiration

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We present a three-dimensional model for flow pumping in a channel induced by two moving contractions from the upper wall. This pumping model is inspired by insect respiration processes, specifically, the rhythmic collapses that take place within their tracheal tube networks. The present work is a natural extension of our previous theoretical and numerical investigations of a two-dimensional insect-inspired micropumping model, which accounts for three-dimensional effects and further validates our insect-inspired pumping paradigm (Aboelkassem and Staples in Acta Mech 223(3):463–480, 2012a; Theor Comput Fluid Dyn, 2012b. doi:10.1007/s00162-012-0269-7). The formal goal of this article is to compare three-dimensional Stokeslets-meshfree numerical results with results from our previous two-dimensional analytical pumping model. We use regularized Stokeslets-meshfree computations in three dimensions to reconstruct the flow motions induced by wall contractions and to calculate the time-averaged net flow pumping rate. The results show that, although the net flow rate distribution as a function of the wall motion time (phase) lag parameter for the three-dimensional Stokeslets-meshfree computations and the two-dimensional analytical model displays some differences, the same basic features appear in both cases, leading to the same general conclusions about the proposed pumping paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aboelkassem, Y.: Novel Bioinspired Pumping Models for Microscale Flow Transport. PhD. Dissertation, Virginia Tech (2012)

  2. Aboelkassem Y., Staples A.E.: Flow transport in a microchannel induced by moving wall contractions: a novel micropumping mechanism. Acta Mech. 223(3), 463–480 (2012a)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aboelkassem Y., Staples A.E.: Stokeslets-meshfree computations and theory for flow in a collapsible microchannel. Theor. Comput. Fluid Dyn. 27(5), 681–700 (2012b) doi:10.1007/s00162-012-0269-7

    Article  Google Scholar 

  4. Aboelkassem, Y., Staples, A.E.: A bioinspired pumping model for flow in a microtube with rhythmic wall contractions. J. Fluids Struct. (in press), (2013a). doi:10.1016/j.jfluidstructs.2013.06.003

  5. Aboelkassem Y., Staples A.E.: Selective pumping in a network: insect-style microscale flow transport. Bioinspir. Biomim. 8, 026004 (2013)

    Article  Google Scholar 

  6. Aboelkassem Y., Staples A.E., Socha J.: Microscale flow pumping inspired by rhythmic tracheal compressions in insects. Proc. ASME Press. Vessel. Piping PVP2011, 57061 (2011)

    Google Scholar 

  7. Ainley J., Durkin S., Embid R., Boindala P., Cortez R.: The method of images for regularized stokeslets. J. Comput. Phys. 227, 4600–4616 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Alves C., Silvestre A.: Density results using stokeslets and a method of fundamental solutions for the stokes equations. Eng. Anal. Boundary Elem. 28, 1245–1252 (2004)

    Article  MATH  Google Scholar 

  9. Aranda V., Cortez R., Fauci L.: Stokesian peristaltic pumping in a three-dimensional tube with a phase-shift asymmetry. Phys. Fluids 23, 081901 (2011)

    Article  Google Scholar 

  10. Cortez R.: The method of regularized stokeslets. SIAM J. Sci. Comput. 23, 1204–1225 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cortez R., Fauci L., Medovikov A.: The method of regularized stokeslets in three dimensions: analysis, validation, and applications to helical swimming. Phys. Fluids 17, 031504 (2005)

    Article  MathSciNet  Google Scholar 

  12. Macagno E., Christensen J.: Fluid mechanics of the duodenum. Ann. Rev. Fluid Mech. 12, 139–158 (1980)

    Article  Google Scholar 

  13. Macagno E., Christensen J., Lee L.: Modeling the effect of wall movement on absorption in the intestine. Am. J. Physiol. 243, G541–G550 (1982)

    Google Scholar 

  14. Mahmood T., Merkin J.: The flow in a narrow duct with an indentation or hump on one wall. Wärme- und Stoffübertragung 22, 69–76 (1990)

    Article  Google Scholar 

  15. Neumaier A.: Solving ill-conditioned and singular linear systems: a tutorial on regularization. SIAM Rev. 40, 636–666 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pedley T., Stephanoff K.D.: Flow along channel with a time-dependent indentation in one wall: the generation of vorticity waves. J. Fluid Mech. 160, 337–367 (1985)

    Article  Google Scholar 

  17. Ralph M., Pedley T.J.: Flow in a channel with moving indentation. J. Fluid Mech. 190, 87–112 (1988)

    Article  Google Scholar 

  18. Secomb T.: Flow in a channel with pulsating walls. J. Fluid Mech. 88, 273–288 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  19. Singh P., Radhakrishnan V., Narayan K.A.: Squeezing flow between parallel plates. Ingenieur-Archiv 60, 274–281 (1990)

    Article  MATH  Google Scholar 

  20. Skalak F., Wang C.Y.: On the unsteady squeezing of a viscous fluid from a tube. J. Aust. Math. Soc. 21(Series B), 65–74 (1978)

    Google Scholar 

  21. Socha J.J., Förster T., Greenlee K.: Issues of convection in insects respiration: insights from synchrotron X-ray imaging and beyond. Respir. Physiol. Neurobiol. 173, S65–S73 (2010)

    Article  Google Scholar 

  22. Socha J.J., Lee W.-K., Harrison J.F., Waters J.S., Fezzaa K., Westneat M.W.: Correlated patterns of tracheal compression and convective gas exchange in a carabid beetle. J. Exp. Biol. 211, 3409–3420 (2008)

    Article  Google Scholar 

  23. Tsuda A., Rogers R.A., H P.E., Butler J.P.: Chaotic mixing deep in the lung. PNAS 99(15), 10173–10178 (2002)

    Article  Google Scholar 

  24. Uchida S., Aoki H.: Unsteady flows in a semi-infinite contracting or expanding pipe. J. Fluid Mech. 82, 371–387 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wang C.Y.: Arbitrary squeezing of fluid from a tube at low squeeze numbers. J. Appl. Math. Phys. (ZAMP) 31, 620–627 (1980)

    Article  MATH  Google Scholar 

  26. Westneat M.W., Socha J., Lee W.-K.: Advances in biological structure, function and physiology using synchrotron X-ray imaging. Ann. Rev. Physiol. 70, 119–142 (2008)

    Article  Google Scholar 

  27. Westneat M.W., Betz O., Blob R.W., Fezzaa K., Cooper W.J., Lee W.-K.: Tracheal respiration in insects visualized with synchrotron X-ray imaging. Science 299, 558–560 (2003)

    Article  Google Scholar 

  28. Young D.L., Chen C., Fan C.M., Murugesan K., Tsai C.C.: The method of fundamental solutions for stokes flow in a rectangular cavity with cylinders. J. Mech. B-Fluids 24, 703–716 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Young D.L., Jane S.J., Fan C.M., Murugesan K., Tsai C.C.: The method of fundamental solutions for 2d and 3d stokes problems. J. Comput. Phys. 211, 1–8 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser Aboelkassem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aboelkassem, Y., Staples, A.E. A three-dimensional model for flow pumping in a microchannel inspired by insect respiration. Acta Mech 225, 493–507 (2014). https://doi.org/10.1007/s00707-013-0964-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0964-5

Keywords

Navigation