Skip to main content
Log in

DQEM for analyzing dynamic characteristics of layered fluid-saturated porous elastic media

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Based on the Porous Media Theory presented by de Boer, the governing differential equations for a layered space-axisymmetrical fluid-saturated porous elastic body are firstly established, in which the suitable interface conditions between layers are presented. Then, a differential quadrature element method (DQEM) is developed, and the DQEM and the second-order backward difference scheme are applied to discretize the governing differential equations of the problem in the spatial and temporal domain, respectively. In order to show the validity of the present analysis, the dynamic response of a fluid-saturated porous medium is analyzed, and the obtained numerical results are directly compared with the existing analytical results. The effects of the numbers of the elements and grid points on the convergence of the numerical results are considered. Finally, the dynamic characteristics of a layered fluid-saturated elastic soil cylinder subjected to a water pressure or a dynamic loading are studied, and the effects of material parameters are considered in detail. From the above numerical results, it can be found that the DQEM has advantages, such as little amount in computation, good stability and convergence as well as high accuracy, so it is a very efficient method for solving the problems in soil mechanics, especially such problems with discontinuities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PMT:

Porous Media Theory

DQEM:

Differential quadrature element method

FEM:

Finite element method

BEM:

Boundary element method

EFGM:

Element-free Galerkin method

DQM:

Differential quadrature method

\({r_\infty}\) :

Radius of a layered fluid-saturated porous elastic cylinder

H :

Height of the cylinder

H i (i = 1,2, . . . , n):

Height of the i th layer medium

n :

Number of layers

\({{\it {\bf u}}^{Si} = ({u_r^i ,u_\theta ^i ,u_z^i})}\) :

Displacement vector of the solid skeleton of the i th layer medium in the cylinder coordinate system

\({{\it {\bf w}}^{Fi} = ({w_r^i ,w_\theta ^i ,w_z^i})}\) :

Displacement vector of the fluid phase of the i th layer medium in the cylinder coordinate system

\({\lambda ^{Si}, \mu ^{Si}}\) :

Lame coefficients of the ith layer medium

p i :

Effective pore pressure of the fluid phase

\({S_v^i = \frac{(n^{Fi})^{2} \gamma ^{FRi}}{\kappa ^{Fi}}}\) :

Coupled interaction coefficient between the solid skeleton and fluid phase

\({\gamma ^{FRi}}\) :

Effective specific weight of the fluid

\({\kappa ^{Fi}}\) :

Darcy permeability coefficient

\({\rho ^{\alpha i}(\alpha = S,F)}\) :

Partial densities of the solid skeleton and fluid phase

\({n^{\alpha i}(\alpha = S,F)}\) :

Volume fractions of the solid skeleton and fluid phase

\({n_{^{0S}}^{Si}}\) :

Volume fraction of the solid skeleton at the initial state

\({\tilde {w}_r^i = \dot {w}_r^i -\dot {u}_r^i}\) :

Relative velocity of the fluid phase corresponding to the solid skeleton along the r-direction

\({\tilde {w}_z^i = \dot {w}_z^i -\dot {u}_z^i}\) :

Relative velocity of the fluid phase corresponding to the solid skeleton along the z-direction

\({\varepsilon _r^{Si} ,\varepsilon _\theta ^{Si} ,\varepsilon _z^{Si} ,\gamma _{rz}^{Si}}\) :

Strain components of the solid skeleton for the ith layer medium

\({\sigma _r^{SEi} ,\sigma _\theta ^{SEi} ,\sigma _z^{SEi} ,\tau_{rz}^{SEi}}\) :

Effective stress components of the solid skeleton for the ith layer medium

\({\sigma _r^{Si} ,\sigma _\theta ^{Si} ,\sigma _z^{Si} ,\tau_{rz}^{Si}}\) :

Total stress components of the solid skeleton for the ith layer medium

\({N_r^i \times N_z^i}\) :

Number of Grid points collocated along the r- and z-directions in the ith element

\({\psi _{\zeta \eta}^i = \psi ^{i}(r_\zeta ,z_\eta)}\) :

Value of function \({\psi ^{i}({r,z})}\) at the grid point \({({r,z}) = (r_\zeta ,z_\eta )}\)

\({A_{\zeta k}^{(j,i)}}\) :

Weighting coefficient of the jth order derivative of \({\psi ^{i}({r,z})}\) with respect to r in the ith element

\({B_{\eta l}^{(s,i)}}\) :

Weighting coefficient of the sth order derivative of \({\psi ^{i}({r,z})}\) with respect to z in the ith element

References

  1. Biot M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  MATH  Google Scholar 

  2. Bowen R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20, 697–735 (1982)

    Article  MATH  Google Scholar 

  3. de Boer R.: Theory of Porous Media: Highlights in the Historical Development and Current State. Springer, Berlin (2000)

    Book  Google Scholar 

  4. de Boer R.: Theoretical poroelasticity—a new approach. Chaos Soliton Fract. 25, 861–878 (2005)

    Article  MATH  Google Scholar 

  5. Schrefler B.A.: Mechanics and thermodynamics of saturated/unsaturated porous materials and quantitative solution. Appl. Mech. Rev. 55, 351–388 (2002)

    Article  Google Scholar 

  6. Placidi L., Dell’lsola F., Ianiro N., Sciarra G.: Variational formulation of pre-stressed solid-fluid mixture theory, with an application to wave phenomena. Eur. J. Mech. A-Solid. 27, 582–606 (2008)

    Article  MATH  Google Scholar 

  7. Schanz M.: Poroelastodynamics: linear models, analytical solutions, and numerical methods. Appl. Mech. Rev. 62, 030803-1–030803-15 (2009)

    Article  Google Scholar 

  8. Ghaboussi J., Wilson E.L.: Variational formulation of dynamics of fluid-saturated porous elastic solids. J. Eng. Mech. Div. 98, 947–963 (1972)

    Google Scholar 

  9. Zeinkiewicz O.C., Shiomi T.: Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution. Int. J. Numer. Anal. Met. Geomech. 8, 71–96 (1984)

    Article  Google Scholar 

  10. Zienkiewicz O.C., Chan A.H.C., Pastor M., Paul D.K., Shiomi T.: Static and dynamic behaviour of soils: a rational approach to quantitative solutions. I. Fully saturated problems. Proc. R. Soc. Lond. A 429, 285–309 (1990)

    Article  MATH  Google Scholar 

  11. Chen J.: Time domain fundamental solution to Biot’s complete equations of dynamic poroelasticity. Part I: two dimensional solution. Int. J. Solid Struct. 31, 1447–1490 (1994)

    Article  MATH  Google Scholar 

  12. Chen J.: Time domain fundamental solution to Biot’s complete equations of dynamic poroelasticity. Part II: three dimensional solution. Int. J. Solid Struct. 31, 169–202 (1994)

    Article  MATH  Google Scholar 

  13. Soares D. Jr, Telles J.C.F., Mansur W.J.: A time-domain boundary element formulation for the dynamic analysis of non-linear porous media. Eng. Anal. Bound. Elem. 30, 363–370 (2006)

    Article  MATH  Google Scholar 

  14. Khalili N., Yazdchi M., Valliappan S.: Wave propagation analysis of two-phase saturated porous media using coupled finite–infinite element method. Soil Dyn. Earthq. Eng. 18, 533–553 (1999)

    Article  Google Scholar 

  15. Karim M.R., Nogami T., Wang J.G.: Analysis of transient response of saturated porous elastic soil under cyclic loading using element-free Galerkin method. Int. J. Solids Struct. 39, 6011–6033 (2002)

    Article  MATH  Google Scholar 

  16. Bowen R.M., Reinicke K.M.: Plane progressive waves in a binary mixture of linear elastic materials. J. Appl. Mech. 45, 493–499 (1978)

    Article  MATH  Google Scholar 

  17. Bowen R.M.: Plane progressive waves in a heat conducting fluid saturated porous material with relaxing porosity. Acta Mech. 46, 189–206 (1983)

    Article  MATH  Google Scholar 

  18. de Boer R., Ehlers W., Liu Z.: One-dimensional transient wave propagation in fluid-saturated incompressible porous media. Arch. Appl. Mech. 63, 59–72 (1993)

    Article  MATH  Google Scholar 

  19. Breuer S.: Quasi-static and dynamic behaviors of saturated porous media with incompressible constituents. Transp. Porous Med. 34, 285–303 (1999)

    Article  MathSciNet  Google Scholar 

  20. Breuer S., Jagering S.: Numerical calculation of the elastic and plastic behavior of saturated porous media. Int. J. Solid Struct. 36, 4821–4840 (1999)

    Article  MATH  Google Scholar 

  21. Yang X., Cheng C.J.: Gurtin variational principle and finite element simulation for dynamical problems of fluid-saturated porous media. Acta Mech. Solida Sin. 16, 24–32 (2003)

    MathSciNet  Google Scholar 

  22. Hu Y.J., Zhu Y.Y., Cheng C.J.: DQM for dynamic response of fluid-saturated visco-elastic porous media. Int. J. Solids Struct. 46, 1667–1675 (2009)

    Article  MATH  Google Scholar 

  23. Bellman R., Casti J.: Differential quadrature and long-term integration. J. Math. Anal. Appl. 34, 235–238 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bellmam R., Kashef B.G., Casti J.: Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J. Comput. Phys. 10, 40–52 (1972)

    Article  Google Scholar 

  25. Bert C.W., Malik M.: Differential quadrature method in computational mechanics: a review. Appl. Mech. Rev. 49, 1–28 (1996)

    Article  Google Scholar 

  26. Striz A.G., Chen W.L., Bert C.W.: Free vibration of plates by the high accuracy quadrature element method. J. Sound Vib. 202, 689–702 (1997)

    Article  MATH  Google Scholar 

  27. Wang X.W., Gu H.Z.: Static analysis of frame structures by the differential quadrature element method. Int. J. Numer. Meth. Eng. 40, 759–772 (1997)

    Article  MATH  Google Scholar 

  28. Liu F.L., Liew K.M.: Static analysis of Reissner–Mindlin plates by differential quadrature element method. J. Appl. Mech. 65, 705–710 (1998)

    Article  Google Scholar 

  29. Hu Y.J., Zhu Y.Y., Cheng C.J.: DQEM for large deformation analysis of structures with discontinuity conditions and initial displacements. Eng. Struct. 30, 1473–1487 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Yuan Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, YY., Hu, YJ. & Cheng, CJ. DQEM for analyzing dynamic characteristics of layered fluid-saturated porous elastic media. Acta Mech 224, 1977–1998 (2013). https://doi.org/10.1007/s00707-013-0851-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0851-0

Keywords

Navigation