Skip to main content
Log in

Hypoelastic soft tissues. Part I: Theory

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Refinements are made to an existing hypoelastic theory developed by Freed [18, 19] for the purpose of modeling the passive response of soft, fibrous, biological tissues. Oldroyd’s [27] operators for convected differentiation and integration, which he derived from the tensor transformation law, are re-derived here from an integral equation defined in the polar configuration. Fields that obey these convected polar operators are said to be viable tensor fields, from which a new definition for strain and its rate are obtained and applied to a hypoelastic theory for tissue. Anisotropy is addressed through a material tensor, from which viable tensor fields describing fiber strain and strain rate are constructed. Material anisotropy and material constitution are handled separately for maximum flexibility. Isochoric hypoelastic models for isotropic, anisotropic, and fiber/matrix composite materials are derived. A material function is introduced to address special attributes that biological fibers impart on tissue behavior, four of which are proposed that represent various ways through which the fiber constituents might be described. Application to in-plane biaxial deformation is the focus of part II of this paper [23].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marsden J.E., Hughes T.J.R.: Mathematic Foundations of Elasticity. Prentice-Hall, Englewood Cliffs (1983) (republished by Dover Publications, Mineola, 1994)

    Google Scholar 

  2. Ogden R.W.: Non-Linear Elastic Deformations. John Wiley, New York (1984) (republished by Dover Publications, Mineola, 1997)

    Google Scholar 

  3. Holzapfel G.A.: Nonlinear Solid Mechanics: a Continuum Approach for Engineering. Wiley, Chichester (2000)

    MATH  Google Scholar 

  4. Truesdell C.: Hypoelasticity. J. Ration. Mech. Anal. 4, 83–133 (1955)

    MathSciNet  Google Scholar 

  5. Criscione J.C., Sacks M.S., Hunter W.C.: Experimentally tractable, pseudo-elastic constitutive law for biomembranes: II. Application. J. Biomech. Eng. 125, 100–105 (2003)

    Article  Google Scholar 

  6. Fung Y.C.: Elasticity of soft tissues in simple elongation. Am. J. Physiol. 28, 1532–1544 (1967)

    Google Scholar 

  7. Humphrey J.D.: Continuum biomechanics of soft biological tissues. Proc. R. Soc. Lond. A-459, 3–46 (2002)

    MathSciNet  Google Scholar 

  8. Humphrey J.D.: Biological soft tissues. In: Sharpe, W.N.J. (eds) Springer Handbook of Experimental Solid Mechanics, pp. 169–185. Springer, New York (2008)

    Chapter  Google Scholar 

  9. Sacks M.S.: Biaxial mechanical evaluation of planar biological materials. J. Elast. 61, 199–246 (2000)

    Article  MATH  Google Scholar 

  10. Sacks M.S., Sun W.: Multiaxial mechanical behavior of biological materials. Annu. Rev. Biomed. Eng. 5, 251–284 (2003)

    Article  Google Scholar 

  11. Viidik A.: Functional properties of collagenous tissues. Int. Rev. Connect. Tissue Res. 6, 127–215 (1973)

    Google Scholar 

  12. Weiss J.A., Gardiner J.C.: Computational modeling of ligament mechanics. Crit. Rev. Biomed. Eng. 29, 303–371 (2001)

    Google Scholar 

  13. Fung Y.C.: Biomechanics: Mechanical Properties of Living Tissues, 2nd edn. Springer, New York (1993)

    Google Scholar 

  14. Humphrey J.D.: Cardiovascular Solid Mechanics; Cells, Tissues, and Organs. Springer, New York (2002)

    Google Scholar 

  15. Freed A.D., Diethelm K.: Caputo derivatives in viscoelasticity: a non-linear finite-deformation theory for tissue. Fractional Calc. Appl. Anal. 10(3), 219–248 (2007)

    MATH  MathSciNet  Google Scholar 

  16. Freed A.D., Einstein D.R., Vesely I.: Invariant formulation for dispersed transverse isotropy in aortic heart valves: an efficient means for modeling fiber splay. Biomech. Model. Mechanobiol. 4, 100–117 (2005)

    Article  Google Scholar 

  17. Greenshields C.J., Weller H.G.: A unified formulation for continuum mechanics applied to fluid-structure interaction in flexible tubes. Int. J. Numer. Methods Eng. 64, 1575–1593 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Freed A.D.: Anisotropy in hypoelastic soft-tissue mechanics, I: theory. J. Mech. Mater. Struct. 3(5), 911–928 (2008)

    Article  MathSciNet  Google Scholar 

  19. Freed A.D.: Anisotropy in hypoelastic soft-tissue mechanics, II: simple extensional experiments. J. Mech. Mater. Struct. 4(6), 1005–1025 (2009)

    Article  Google Scholar 

  20. Dienes J.K.: On the analysis of rotation and stress rate in deforming bodies. Acta Mech. 32, 217–232 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dienes J.K.: A discussion of material rotation and stress rate. Acta Mech. 65, 1–11 (1986)

    Article  Google Scholar 

  22. Dienes, J.K.: Finite Deformation of Material with an Ensemble of Defects. Tech. Rep. LA—13994—MS, Los Alamos National Laboratory (2003)

  23. Freed, A.D., Einstein, D.R., Sacks, M.S.: Hypoelastic Soft Tissues, Part II: in-plane biaxial experiments. Acta Mech. (2010) (submitted)

  24. Green A.E., Naghdi P.M.: A general theory of an elastic-plastic continuum. Arch. Ration. Mech. Anal. 18, 251–281 (1965)

    Article  MathSciNet  Google Scholar 

  25. Lodge A.S.: Elastic Liquids: An introductory vector treatment of finite-strain polymer rheology. Academic Press, London (1964)

    Google Scholar 

  26. Lodge A.S.: Body Tensor Fields in Continuum Mechanics: With applications to polymer rheology. Academic Press, New York (1974)

    Google Scholar 

  27. Oldroyd J.G.: On the formulation of rheological equations of state. Proc. R. Soc. Lond. A 200, 523–541 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  28. Noll W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 2, 197–226 (1958)

    Article  MATH  Google Scholar 

  29. Lodge A.S.: On the use of convected coordinate systems in the mechanics of continuous media. Proc. Camb. Philos. Soc. 47, 575–584 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  30. Meyers A., Schieße P., Bruhns O.T.: Some comments on objective rates of symmetric Eulerian tensors with applications to Eulerian strain rates. Acta Mech. 139, 91–103 (2000)

    Article  MATH  Google Scholar 

  31. Bird R.B., Armstrong R.C., Hassager O.: Dynamics of Polymeric Liquids. Fluid Mechanics, vol. 1, 2nd edn. Wiley, New York (1987)

    Google Scholar 

  32. Zaremba, S.: Sur une forme perfectionnée de la théorie de la relaxation. Bull. Acad. Cracovie 594–614 (1903)

  33. Jaumann G.: Geschlossenes System physikalischer und chemischer Differentialgesetze. Sitzungsber. d. Kaiserlichen Akad. Wiss. Math. Naturwiss. Kl. 120, 385–530 (1911)

    MATH  Google Scholar 

  34. Farahani K., Naghdabadi R.: Basis free relations for the conjugate stresses of the strains based on the right stretch tensor. Int. J. Solids Struct. 40, 5887–5900 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Green G.: On the propagation of light in crystallized media. Trans. Camb. Philos. Soc. 7, 121–140 (1841)

    Google Scholar 

  36. Signorini, A.: Sulle deformazioni thermoelastiche finite. In: Oseen, C.W., Weibull, W. (eds.), Proceedings of the 3rd International Congress for Applied Mechanics, vol. 2, Ab. Sveriges Litografiska Tryckerier, Stockholm, pp. 80–89 (1930)

  37. Johnson M.W. Jr., Segalman D.: A model for viscoelastic fluid behavior which allows non-affine deformation. J. NonNewton. Fluid Mech. 2, 255–270 (1977)

    Article  MATH  Google Scholar 

  38. Szabó L., Balla M.: Comparison of some stress rates. Int. J. Solids Struct. 25, 279–297 (1989)

    Article  Google Scholar 

  39. Treloar L.R.G.: The Physics of Rubber Elasticity. 3rd edn. Clarendon Press, Oxford (1975)

    Google Scholar 

  40. Fung Y.-C.: Biorheology of soft tissues. Biorheology 10, 139–155 (1973)

    Google Scholar 

  41. Stewart G.W.: Introduction to Matrix Computations. Computer Science and Applied Mathematics. Academic Press, New York (1973)

    Google Scholar 

  42. Sokolnikoff I.S.: Tensor Analysis: Theory and applications to geometry and mechanics of continua, 2nd edn., Applied Mathematics Series. Wiley, New York (1964)

    Google Scholar 

  43. Sellaro T.L., Hildebrand D., Lu Q., Vyavahare N., Scott M., Sacks M.S.: Effects of collagen fiber orientation on the response of biologically derived soft tissue biomaterials to cyclic loading. J. Biomed. Mater. Res. 80A, 194–205 (2007)

    Article  Google Scholar 

  44. Spencer A.J.M.: Deformations in Fibre-reinforced Materials. Oxford Science Research Papers. Clarendon Press, Oxford (1972)

    Google Scholar 

  45. Gasser T.C., Ogden R.W., Holzapfel G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006)

    Article  Google Scholar 

  46. Rajagopal K.R., Tao L.: Mechanics of Mixtures. World Scientific, River Edge (1995)

    MATH  Google Scholar 

  47. Lanir Y.: Mechanisms of residual stress in soft tissues. J. Biomech. Eng. 131, 044506 (2009)

    Article  Google Scholar 

  48. Lokshin O., Lanir Y.: Viscoelasticity and preconditioning of rat skin under uniaxial stretch: microstructural constitutive characterization. J. Biomech. Eng. 131, 031009 (2009)

    Article  Google Scholar 

  49. Mow V.C., Kuei S.C., Lai W.M., Armstrong C.G.: Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102, 73–83 (1980)

    Article  Google Scholar 

  50. Lai W.M., Hou J.S., Mow V.C.: A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113, 245–258 (1991)

    Article  Google Scholar 

  51. Humphrey J.D., Rajagopal K.R.: A constrained mixture model for arterial adaptations to a sustained step change in blood flow. Biomech. Model. Mechanobiol. 2, 109–126 (2003)

    Article  Google Scholar 

  52. Freed A.D., Doehring T.C.: Elastic model for crimped collagen fibrils. J. Biomech. Eng. 127, 587–593 (2005)

    Article  Google Scholar 

  53. Ogden R.W.: Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A-326, 565–584 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan David Freed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freed, A.D. Hypoelastic soft tissues. Part I: Theory. Acta Mech 213, 189–204 (2010). https://doi.org/10.1007/s00707-009-0276-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0276-y

Keywords

Navigation