Skip to main content
Log in

Classical and Cosserat plasticity and viscoplasticity models for slow granular flow

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We consider models for the rheology of dense, slowly deforming granular materials based of classical and Cosserat plasticity, and their viscoplastic extensions that account for small but finite particle inertia. We determine the scale for the viscosity by expanding the stress in a dimensionless parameter that is a measure of the particle inertia. We write the constitutive relations for classical and Cosserat plasticity in stress-explicit form. The viscoplastic extensions are made by adding a rate-dependent viscous stress to the plasticity stress. We apply the models to plane Couette flow, and show that the classical plasticity and viscoplasticity models have features that depart from experimental observations; the prediction of the Cosserat viscoplasticity model is qualitatively similar to that of Cosserat plasticity, but the viscosities modulate the thickness of the shear layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aranson, I.S., Tsimring, L.S.: Continuum theory of partially fluidized granular flows. Phys. Rev. E 65, 061, 303-1-20 (2002)

    Google Scholar 

  2. Besdo D.: Ein beitrag zur nichtlinearen theorie des Cosserat-kontinuums. Acta Mech. 20, 105–131 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cosserat E., Cosserat F.: Theorie des Corps Deformables. A. Hermann et Fils, Paris (1909)

    Google Scholar 

  4. Dahler J.S.: Transport phenomena in a fluid composed of diatomic molecules. J. Chem. Phys. 30, 1447–1475 (1959)

    Article  Google Scholar 

  5. Davis R.O., Mullenger G.: A rate-type constitutive model for soil with a critical state. Int. J. Num. Anal. Meth. Geomech. 2, 255–282 (1978)

    Article  MATH  Google Scholar 

  6. de Borst R.: A generalisation of the J 2-flow theory for polar continua. Comp. Methods Appl. Mech. Eng. 103, 347–362 (1993)

    Article  MATH  Google Scholar 

  7. MiDi G.D.R.: On dense granular flows. Eur. Phys. J. E 14, 341–365 (2004)

    Article  Google Scholar 

  8. Goddard J.D.: Dissipative materials as constitutive models for granular media. Acta Mech. 63, 3–13 (1986)

    Article  MATH  Google Scholar 

  9. Johnson P.C., Jackson R.: Frictional-collisional constitutive relations for granular materials, with application to plane shearing. J. Fluid Mech. 176, 67–93 (1987)

    Article  Google Scholar 

  10. Johnson P.C., Nott P., Jackson R.: Frictional-collisional equations of motion for particulate flows and their application to chutes. J. Fluid Mech. 210, 501–535 (1990)

    Article  Google Scholar 

  11. Jop P., Forterre Y., Pouliquen O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006)

    Article  Google Scholar 

  12. Karlsson T., Klisinski M., Runneson K.: Finite element simulation of granular material flow in plane silos with complicated geometry. Powder Technol. 99, 29–39 (1998)

    Article  Google Scholar 

  13. Ko H.Y., Scott R.F.: Deformation of sand in shear. J. Soil Mech. Found. Div. ASCE 93, 283–310 (1967)

    Google Scholar 

  14. Kolymbas D.: An outline of hypoplasticity. Arch. Appl. Mech. 61, 143–151 (1991)

    MATH  Google Scholar 

  15. Lade P.V.: Effects of voids and volume changes on the behaviour of frictional materials. Int. J. Num. Anal. Meth. Geomech. 12, 351–370 (1988)

    Article  Google Scholar 

  16. Lade P.V., Duncan J.M.: Elastoplastic stress-strain theory for cohesionless soil. J. Geotech. Eng. Div. ASCE 101, 1037–1053 (1975)

    Google Scholar 

  17. Lippmann H.: Cosserat plasticity and plastic spin. Appl. Mech. Rev. 48, 753–762 (1995)

    Article  Google Scholar 

  18. Losert W., Bocquet L., Lubensky T.C., Gollub J.P.: Particle dynamics in sheared granular matter. Phys. Rev. Lett. 85, 1428–1431 (2000)

    Article  Google Scholar 

  19. Lun C.K.K.: Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres. J. Fluid Mech. 233, 539–559 (1991)

    Article  MATH  Google Scholar 

  20. Mohan L.S., Nott P.R., Rao K.K.: A frictional Cosserat model for the flow of granular materials through a vertical channel. Acta Mech. 138, 75–96 (1999)

    Article  MATH  Google Scholar 

  21. Mohan L.S., Nott P.R., Rao K.K.: A frictional Cosserat model for the slow shearing of granular materials. J. Fluid Mech. 457, 377–409 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Mueth D.M., Debregeas G.F., Karczmar G.S., Eng P.J., Nagel S.R., Jaeger H.M.: Signatures of granular microstructure in dense shear flows. Nature 406, 385–389 (2000)

    Article  Google Scholar 

  23. Muir Wood D.: Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  24. Prakash J.R., Rao K.K.: Steady compressible flow of granular materials through a wedge-shaped hopper: the smooth wall radial gravity problem. Chem. Eng. Sci. 43, 479–494 (1988)

    Article  Google Scholar 

  25. Rao K.K., Nott P.R.: An Introduction to Granular Flow. Cambridge University Press, New York (2008)

    Book  Google Scholar 

  26. Rowe P.W.: The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. R. Soc. Lond. A 269, 500–527 (1962)

    Article  Google Scholar 

  27. Savage S.B.: Analyses of slow high-concentration flows of granular materials. J. Fluid Mech. 377, 1–26 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Savage S.B., Hutter K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177–215 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schofield A.N., Wroth C.P.: Critical State Soil Mechanics. McGraw-Hill, London (1968)

    Google Scholar 

  30. Srivastava A., Sundaresan S.: Analysis of a frictional-kinetic model for gas-particle flow. Powder Technol. 129, 72–85 (2003)

    Article  Google Scholar 

  31. Tardos G., Khan M., Schaeffer D.: Forces on a slowly rotating, rough cylinder in a couette device containing a dry, frictional powder. Phys. Fluids 10, 335–341 (1998)

    Article  Google Scholar 

  32. Tejchman J., Wu W.: Numerical study of patterning of shear bands in a Cosserat continuum. Acta Mech. 99, 61–74 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhu R. Nott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nott, P.R. Classical and Cosserat plasticity and viscoplasticity models for slow granular flow. Acta Mech 205, 151–160 (2009). https://doi.org/10.1007/s00707-009-0166-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0166-3

Keywords

Navigation