Skip to main content

Advertisement

Log in

Electrochemical evaluation of LiNi0.5Mn0.3Co0.2O2, LiNi0.6Mn0.2Co0.2O2, and LiNi0.8Mn0.1Co0.1O2 cathode materials for lithium-ion batteries: from half-coin cell to pouch cell

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Three types of lithium nickel–manganese–cobalt oxide (NMC) cathode materials (NMC532, NMC622, and NMC811) proposed for use in lithium-ion batteries were evaluated and compared by electrochemical methods. It was found how each transition metal (Ni, Mn, and Co) in this ternary compound affects the electrochemical performance of the cathode materials. Based on cyclic voltammetry, all three materials require pre-cycling to attain a suitable structure for electrochemical reactions. Ni and Co controlled the initial capacity of the materials, but capacity retention during cycling was determined by the stability of the material, which is balanced by the ratio adjusting of Ni, Mn, and Co. Mn and Co provide chemical stability and structural stability for NMC materials, respectively. The voltage decay in the NMC811 was less than the others due to the presence of higher amounts of Ni2+ and Ni3+, which have a much smaller radius than lithium-ion and less cation mixing. The capacity retention of NMC622 at high rates was higher than the other two materials. The combination of galvanostatic intermittent titration technique (GITT), cyclic voltammetry at different scan rates, and intercalation isotherm showed that the diffusion coefficient of lithium ion for NMC622 is higher than the other two materials. Electrochemical impedance spectroscopy showed that the resistance of the surface layer is lower in NMC622 than the others in different lithium-ion concentrations. The self-discharge test showed the superiority of NMC811 over the others. Considering all performance factors, NMC622 and NMC811 are efficient materials for various applications, especially electric vehicles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Gholami M, Zarei-Jelyani M, Babaiee M, Baktashian S, Eqra R (2020) Ionics 26:4391

    Article  CAS  Google Scholar 

  2. Moghim MH, Nahvi Bayani A, Eqra R (2020) Polym Int 69:545

    Article  CAS  Google Scholar 

  3. Venkataprasad G, Reddy TM, Narayana AL, Hussain O, Gopal TV, Shaikshavali P (2021) Monatsh Chem 152:785

    Article  CAS  Google Scholar 

  4. Zhang X, Tang Y, Zhang F, Lee C-S (2016) Adv Energy Mater 6:1502588

    Article  Google Scholar 

  5. Shan Y, Li L, Chen X, Fan S, Yang H, Jiang Y (2022) ACS Energy Lett 7:2289

    Article  CAS  Google Scholar 

  6. Zhang Z, Feng L, Liu H, Wang L, Wang S, Tang Z (2022) Inorg Chem Front 9:35

    Article  CAS  Google Scholar 

  7. Chen X, Li L, Shan Y, Zhou D, Cui W, Zhao Y (2022) J Energy Chem 70:502

    Article  CAS  Google Scholar 

  8. Zhang T, Yang L, Zhang C, Feng Y, Wang J, Shen Z, Chen Q, Lei Q, Chi Q (2022) Mater Horiz 9:1273

    Article  CAS  PubMed  Google Scholar 

  9. Wei T, Wang Z, Zhang M, Zhang Q, Lu J, Zhou Y, Sun C, Yu Z, Wang Y, Qiao M, Qin S (2022) Mater Today Commun 31:103518

    Article  CAS  Google Scholar 

  10. Pan Q, Zheng Y, Tong Z, Shi L, Tang Y (2021) Angew Chem Int Ed 60:11835

    Article  CAS  Google Scholar 

  11. Lei X, Liang X, Yang R, Zhang F, Wang C, Lee C-S, Tang Y (2022) Small 18:2200418

    Article  CAS  Google Scholar 

  12. Wei T, Wang Z, Zhang Q, Zhou Y, Sun C, Wang M, Liu Y, Wang S, Yu Z, Qiu X, Xu S, Qin S (2022) Cryst Eng Comm 24:5014

    Article  CAS  Google Scholar 

  13. Babaiee M, Baktashian S, Zarei-Jelyani M, Eqra R, Gholami M (2022) Chem Select 7:e202201510

    CAS  Google Scholar 

  14. Babaiee M, Zarei-Jelyani M, Baktashian S, Eqra R (2021) J Renew Energy Environ 9:63

    Google Scholar 

  15. Loghavi MM, Bahadorikhalili S, Lari N, Moghim MH, Babaiee M, Eqra R (2020) Z Phys Chem 234:381

    Article  CAS  Google Scholar 

  16. Dehghan F, Mohammadi-Manesh H, Loghavi M (2019) J Struct Chem 60:727

    Article  CAS  Google Scholar 

  17. He X, Yan Q, He H, Shang J, Zhou X, Chanlek N, Tunmee S, Kidkhunthod P, Yao W, Tang Y (2022) Adv Sustainab Syst 6:2200122

    Article  CAS  Google Scholar 

  18. Nahvi Bayani A, Moghim MH, Bahadorikhalili S, Ghasemi A (2019) J Renew Energy Environ 6:15

    Google Scholar 

  19. Moghim MH, Nahvibayani A, Eqra R (2022) Polym Eng Sci 62:3049

    Article  CAS  Google Scholar 

  20. Xu B, Qian D, Wang Z, Meng YS (2012) Mater Sci Eng: R: Rep 73:51

    Article  CAS  Google Scholar 

  21. Peng M, Shin K, Jiang L, Jin Y, Zeng K, Zhou X, Tang Y (2022) Angew Chem Int Ed 61:e202206770

    CAS  Google Scholar 

  22. Manthiram A, Song B, Li W (2017) Energy Storage Mater 6:125

    Article  Google Scholar 

  23. Zhang S, Guo X, Dou X, Zhang X (2020) Sustain Energy Technol Assess 40:100752

    Google Scholar 

  24. Ding Y, Cano ZP, Yu A, Lu J, Chen Z (2019) Electrochem Energy Rev 2:1

    Article  CAS  Google Scholar 

  25. Ohzuku T, Ueda A, Nagayama M, Iwakoshi Y, Komori H (1993) Electrochim Acta 38:1159

    Article  CAS  Google Scholar 

  26. da Silva LL, Quartier M, Buchmayr A, Sanjuan-Delmás D, Laget H, Corbisier D, Mertens J, Dewulf J (2021) Sustain Energy Technol Assess 46:101286

    Google Scholar 

  27. Li D, Li H, Danilov DL, Gao L, Chen X, Zhang Z, Zhou J, Eichel R-A, Yang Y, Notten PH (2019) J Power Sources 416:163

    Article  CAS  Google Scholar 

  28. Li J, Cameron AR, Li H, Glazier S, Xiong D, Chatzidakis M, Allen J, Botton G, Dahn J (2017) J Electrochem Soc 164:A1534

    Article  CAS  Google Scholar 

  29. Ahn J, Jang EK, Yoon S, Lee S-J, Sung S-J, Kim D-H, Cho KY (2019) Appl Surf Sci 484:701

    Article  CAS  Google Scholar 

  30. Jackson DH, Kuech TF (2017) J Power Sources 365:61

    Article  CAS  Google Scholar 

  31. Liu Y-H, Takeda S, Kaneko I, Yoshitake H, Mukai T, Yanagida M, Saito Y, Sakai T (2018) J Phys Chem C 122:5864

    Article  CAS  Google Scholar 

  32. Klinser G, Stückler M, Kren H, Koller S, Goessler W, Krenn H, Würschum R (2018) J Power Sources 396:791

    Article  CAS  Google Scholar 

  33. Xu L, Zhou F, Liu B, Zhou H, Zhang Q, Kong J, Wang Q (2018) Int J Electrochem 324:49

    CAS  Google Scholar 

  34. Jung R, Strobl P, Maglia F, Stinner C, Gasteiger HA (2018) J Electrochem Soc 165:A2869

    Article  CAS  Google Scholar 

  35. Li J, Downie LE, Ma L, Qiu W, Dahn J (2015) J Electrochem Soc 162:A1401

    Article  CAS  Google Scholar 

  36. Li J, Liu H, Xia J, Cameron AR, Nie M, Botton GA, Dahn J (2017) J Electrochem Soc 164:A655

    Article  CAS  Google Scholar 

  37. Huang B, Wang M, Zhao Z, Chen L, Gu Y (2019) J Alloys Compd 810:151800

    Article  CAS  Google Scholar 

  38. Widiyandari H, Sukmawati AN, Sutanto H, Yudha C, Purwanto A (2019) J Phys: Conf Ser 1153:012074

    CAS  Google Scholar 

  39. Gao Y, Park J, Liang X (2020) ACS Appl Energy Mater 3:8978

    Article  CAS  Google Scholar 

  40. Zhao E, Chen M, Hu Z, Chen D, Yang L, Xiao X (2017) J Power Sources 343:345

    Article  CAS  Google Scholar 

  41. Huang B, Zhao Z, Sun Y, Wang M, Chen L, Gu Y (2019) Solid State Ionics 338:31

    Article  CAS  Google Scholar 

  42. Loghavi MM, Mohammadi-Manesh H, Eqra R (2019) J Electroanal Chem 848:113326

    Article  CAS  Google Scholar 

  43. Loghavi MM, Mohammadi-Manesh H, Eqra R (2019) J Solid State Electrochem 23:2569

    Article  CAS  Google Scholar 

  44. Märker K, Reeves PJ, Xu C, Griffith KJ, Grey CP (2019) Chem Mater 31:2545

    Article  Google Scholar 

  45. Exner KS (2017) Chem Electro Chem 4:3231

    CAS  Google Scholar 

  46. Exner KS (2018) J Solid State Electrochem 22:3111

    Article  CAS  Google Scholar 

  47. Ivanishchev AV, Churikov AV, Ivanishcheva IA, Ushakov AV (2016) Ionics 22:483

    Article  CAS  Google Scholar 

  48. Churikov A, Kachibaya E, Sycheva V, Ivanishcheva I, Imnadze R, Paikidze T, Ivanishchev A (2009) Russ J Electrochem 45:175

    Article  CAS  Google Scholar 

  49. Ivanishchev A, Ivanishcheva I, Dixit A (2019) Russ J Electrochem 55:719

    Article  CAS  Google Scholar 

  50. Ivanishchev A, Ivanishcheva I (2020) Russ J Electrochem 56:907

    Article  CAS  Google Scholar 

  51. Ivanishchev AV, Bobrikov IA, Ivanishcheva IA, Ivanshina OY (2018) J Electroanal Chem 821:140

    Article  CAS  Google Scholar 

  52. Ivanishchev AV, Gridina NA, Rybakov KS, Ivanishcheva IA, Dixit A (2020) J Electroanal Chem 860:113894

    Article  CAS  Google Scholar 

  53. Kumar Nayak P, Grinblat J, Levi E, Penki TR, Levi M, Sun Y-K, Markovsky B, Aurbach D (2017) ACS Appl Mater Interfaces 9:4309

    Article  CAS  PubMed  Google Scholar 

  54. Shi J-L, Zhang J-N, He M, Zhang X-D, Yin Y-X, Li H, Guo Y-G, Gu L, Wan L-J (2016) ACS Appl Mater Interfaces 8:20138

    Article  CAS  PubMed  Google Scholar 

  55. Zhang S, Chen J, Tang T, Jiang Y, Chen G, Shao Q, Yan C, Zhu T, Gao M, Liu Y (2018) J Mater Chem A 6:3610

    Article  CAS  Google Scholar 

  56. RN R, Bosubabu D, MG KB, Ramesha K (2020) ACS Appl Energy Mater 3:10872

  57. Rossen E, Jones C, Dahn J (1992) Solid State Ionics 57:311

    Article  CAS  Google Scholar 

  58. Paulsen J, Dahn J (1999) Solid State Ionics 126:3

    Article  CAS  Google Scholar 

  59. Whittingham MS (2004) Chem Rev 104:4271

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mohsen Loghavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loghavi, M.M., Nahvibayani, A., Moghim, M.H. et al. Electrochemical evaluation of LiNi0.5Mn0.3Co0.2O2, LiNi0.6Mn0.2Co0.2O2, and LiNi0.8Mn0.1Co0.1O2 cathode materials for lithium-ion batteries: from half-coin cell to pouch cell. Monatsh Chem 153, 1197–1212 (2022). https://doi.org/10.1007/s00706-022-02995-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-02995-9

Keywords

Navigation