Skip to main content
Log in

LiNi0.8Co0.15Al0.05O2 coated by chromium oxide as a cathode material for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

LiNi0.8Co0.15Al0.05O2 (NCA) material was decorated with different contents of Cr2O3 (0.01–2 wt%) via a precipitation technique followed by calcination at 600 °C. The existence of the coating on the NCA particles was confirmed by SEM and elemental EDS mapping. XRD analysis showed that the addition of Cr2O3 did not change the crystalline structure of NCA. The electrochemical performance of samples was evaluated by cyclability, cyclic voltammetry, electrochemical impedance spectroscopy, and rate capability tests. Electrochemical evaluations revealed that the addition of 0.25–0.5 wt% Cr2O3 not only enhanced the electrochemical reversibility of NCA but also improved its rate capability. The capacity retention of 92.1% after 50 cycles at the 0.5C rate was obtained for the optimized material, while the bare NCA retained a capacity of 69%. At a rate of 2C, the specific discharge capacity of the optimized material was 162.2 mAh g−1, while it was 149.7 mAh g−1 for the bare one. These enhancements may be attributed to the stability of the surface film on the NCA, reduction of the SEI layer thickness, and reduction of charge-transfer resistance of the electrode due to the Cr2O3 protection layer on the cathode material, which reduced the side reactions of the cathode material with the electrolyte.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Soloveichik GL (2011) Battery technologies for large-scale stationary energy storage. Annu Rev Chem Biomol Eng 2(1):503–527

    Article  CAS  PubMed  Google Scholar 

  2. Baker J (2008) New technology and possible advances in energy storage. Energy Policy 36(12):4368–4373

    Article  Google Scholar 

  3. Moghim MH, Eqra R, Babaiee M, Zarei-Jelyani M, Loghavi MM (2017) Role of reduced graphene oxide as nano-electrocatalyst in carbon felt electrode of vanadium redox flow battery. J Electroanal Chem 789:67–75

    Article  CAS  Google Scholar 

  4. Chang C, Xiang J, Li M, Han X, Yuan L, Sun J (2009) Improved disordered carbon as high performance anode material for lithium ion battery. J Solid State Electrochem 13(3):427–431

    Article  CAS  Google Scholar 

  5. Yu C, Bai Y, Yan D, Li X, Zhang W (2014) Improved electrochemical properties of Sn-doped TiO2 nanotube as an anode material for lithium ion battery. J Solid State Electrochem 18(7):1933–1940

    Article  CAS  Google Scholar 

  6. Loghavi MM, Askari M, Babaiee M, Ghasemi A (2019) Improvement of the cyclability of Li-ion battery cathode using a chemical-modified current collector. J Electroanal Chem 841:107–110

    Article  CAS  Google Scholar 

  7. Dehghan F, Mohammadi-Manesh H, Loghavi MM (2019) Investigation of lithium-ion diffusion in LiCoPO4 cathode material by molecular dynamics simulation. J Struct Chem 60(5):727–735

    Article  CAS  Google Scholar 

  8. Zhao B, Ran R, Liu M, Shao Z (2015) A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives. Mater Sci Eng R 98:1–71

    Article  Google Scholar 

  9. Pistoia G (2005) Batteries for portable devices. Elsevier, Amsterdam

    Google Scholar 

  10. Cao H, Xia B, Xu N, Zhang C (2004) Structural and electrochemical characteristics of Co and Al co-doped lithium nickelate cathode materials for lithium-ion batteries. J Alloys Compd 376(1-2):282–286

    Article  CAS  Google Scholar 

  11. Delmas C, Saadoune I, Rougier A (1993) The cycling properties of the LixNi1−yCoyO2 electrode. J Power Sources 44(1-3):595–602

    Article  CAS  Google Scholar 

  12. Palacin M, Larcher D, Audemer A, Sac-Épée N, Amatucci G, Tarascon JM (1997) Low-temperature synthesis of LiNiO2 reaction mechanism, stability, and electrochemical properties. J Electrochem Soc 144:4226–4236

    Article  CAS  Google Scholar 

  13. Levi E, Levi M, Salitra G, Aurbach D, Oesten R, Heider U, Heider L (1999) Electrochemical and in-situ XRD characterization of LiNiO2 and LiCo0.2Ni0.8O2 electrodes for rechargeable lithium cells. Solid State Ionics 126(1-2):97–108

    Article  CAS  Google Scholar 

  14. Hildebrand S, Vollmer C, Winter M, Schappacher FM (2017) Al2O3, SiO2 and TiO2 as coatings for safer LiNi0.8Co0.15Al0.05O2 cathodes: electrochemical performance and thermal analysis by accelerating rate calorimetry. J Electrochem Soc 164(9):A2190–A2198

    Article  CAS  Google Scholar 

  15. Dai G, Yu M, Shen F, Cao J, Ni L, Chen Y, Tang Y, Chen Y (2016) Improved cycling performance of LiNi0.8Co0.15Al0.05O2/Al2O3 with core-shell structure synthesized by a heterogeneous nucleation-and-growth process. Ionics 22(11):2021–2026

    Article  CAS  Google Scholar 

  16. Ruan Z, Zhu Y, Teng X (2016) Effect of pre-thermal treatment on the lithium storage performance of LiNi0.8Co0.15Al0.05O2. J Mater Sci 51(3):1400–1408

    Article  CAS  Google Scholar 

  17. Wang Z, Liu H, Wu J, Lau W-M, Mei J, Liu H, Liu G (2016) Hierarchical LiNi0.8Co0.15Al0.05O2 plates with exposed {010} active planes as a high performance cathode material for Li-ion batteries. RSC Adv 6(38):32365–32369

    Article  CAS  Google Scholar 

  18. Jiang Q, Gao Y, Peng J, Li H, Liu Q, Jiang L, Lu X, Hu A (2018) Effects of polyvinyl alcohol on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material. J Solid State Electrochem 22(12):3807–3813

    Article  CAS  Google Scholar 

  19. Chen T, Wang F, Li X, Yan X, Wang H, Deng B, Xie Z, Qu M (2019) Dual functional MgHPO4 surface modifier used to repair deteriorated Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material. Appl Surf Sci 465:863–870

    Article  CAS  Google Scholar 

  20. Luo Z, Zhang H, Yu L, Huang D, Shen J (2019) Improving long-term cyclic performance of LiNi0.8Co0.15Al0.05O2 cathode by introducing a film forming additive. J Electroanal Chem 833:520–526

    Article  CAS  Google Scholar 

  21. Li X, Xie Z, Liu W, Ge W, Wang H, Qu M (2015) Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0.8Co0.15Al0.05O2. Electrochim Acta 174:1122–1130

    Article  CAS  Google Scholar 

  22. Huang B, Li X, Wang Z, Guo H, Xiong X (2014) Synthesis of Mg-doped LiNi0.8Co0.15Al0.05O2 oxide and its electrochemical behavior in high-voltage lithium-ion batteries. Ceram Int 40(8):13223–13230

    Article  CAS  Google Scholar 

  23. Yoon S, Jung K-N, Yeon S-H, Jin CS, Shin K-H (2012) Electrochemical properties of LiNi0.8Co0.15Al0.05O2–graphene composite as cathode materials for lithium-ion batteries. J Electroanal Chem 683:88–93

    Article  CAS  Google Scholar 

  24. Zhang L, Fu J, Zhang C (2017) Mechanical composite of LiNi0.8Co0.15Al0.05O2/carbon nanotubes with enhanced electrochemical performance for lithium-ion batteries. Nanoscale Res Lett 12:376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu N, Wu H, Liu H, Zhang Y (2016) Solvothermal coating LiNi0.8Co0.15Al0.05O2 microspheres with nanoscale Li2TiO3 shell for long lifespan Li-ion battery cathode materials. J Alloys Compd 665:48–56

    Article  CAS  Google Scholar 

  26. Liu W, Hu G, Du K, Peng Z, Cao Y, Liu Q (2012) Synthesis and characterization of LiCoO2-coated LiNi0.8Co0.15Al0.05O2 cathode materials. Mater Lett 83:11–13

    Article  CAS  Google Scholar 

  27. Liu W, Hu G, Du K, Peng Z, Cao Y (2013) Surface coating of LiNi0.8Co0.15Al0.05O2 with LiCoO2 by a molten salt method. Surf Coat Technol 216:267–272

    Article  CAS  Google Scholar 

  28. Du K, Huang J, Cao Y, Peng Z, Hu G (2013) Study of effects on LiNi0.8Co0.15Al0.05O2 cathode by LiNi1/3Co1/3Mn1/3O2 coating for lithium ion batteries. J Alloys Compd 574:377–382

    Article  CAS  Google Scholar 

  29. Şahan H, Göktepe H, Patat Ş, Ülgen A (2010) Effect of the Cr2O3 coating on electrochemical properties of spinel LiMn2O4 as a cathode material for lithium battery applications. Solid State Ionics 181(31-32):1437–1444

    Article  CAS  Google Scholar 

  30. Li X, Lin Y, Lin Y, Lai H, Huang Z (2012) Surface modification of LiNi1/3Co1/3Mn1/3O2 with Cr2O3 for lithium ion batteries. Rare Metals 31(2):140–144

    Article  CAS  Google Scholar 

  31. Xiao L-N, Ding X, Tang Z-F, He X-D, Liao J-Y, Cui Y-H, Chen C-H (2018) Layered LiNi0.8Co0.15Al0.05O2 as cathode material for hybrid Li+/Na+ batteries. J Solid State Electrochem 22(11):3431–3442

    Article  CAS  Google Scholar 

  32. Exner KS (2019) Recent advancements towards closing the community gap between electrocatalysis and battery science: the computational lithium electrode and activity-stability volcano plots. ChemSusChem 12(11):2330–2344

    CAS  PubMed  Google Scholar 

  33. Eom J, Kim MG, Cho J (2008) Storage characteristics of LiNi0.8Co0.1+xMn0.1−xO2 (x= 0, 0.03, and 0.06) cathode materials for lithium batteries. J Electrochem Soc 155(3):A239–A245

    Article  CAS  Google Scholar 

  34. Lai Y-Q, Xu M, Zhang Z-A, Gao C-H, Wang P, Yu Z-Y (2016) Optimized structure stability and electrochemical performance of LiNi0. 8Co0.15Al0.05O2 by sputtering nanoscale ZnO film. J Power Sources 309:20–26

    Article  CAS  Google Scholar 

  35. Han CJ, Yoon JH, Cho WI, Jang H (2004) Electrochemical properties of LiNi0.8Co0.2−xAlxO2 prepared by a sol–gel method. J Power Sources 136(1):132–138

    Article  CAS  Google Scholar 

  36. Abraham D, Kawauchi S, Dees D (2008) Modeling the impedance versus voltage characteristics of LiNi0.8Co0.15Al0.05O2. Electrochim Acta 53(5):2121–2129

    Article  CAS  Google Scholar 

  37. Exner KS (2017) Constrained ab initio thermodynamics: transferring the concept of surface Pourbaix diagrams in electrocatalysis to electrode materials in lithium-ion batteries. ChemElectroChem 4(12):3231–3237

    Article  CAS  Google Scholar 

  38. Exner KS (2018) A short perspective of modeling electrode materials in lithium-ion batteries by the ab initio atomistic thermodynamics approach. J Solid State Electrochem 22(10):3111–3117

    Article  CAS  Google Scholar 

  39. Zhang M, Hu G, Liang L, Peng Z, Du K, Cao Y (2016) Improved cycling performance of Li2MoO4-inlaid LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium-ion battery under high cutoff voltage. J Alloys Compd 673:237–248

    Article  CAS  Google Scholar 

  40. You Y, Celio H, Li J, Dolocan A, Manthiram A (2018) Modified high-nickel cathodes with stable surface chemistry against ambient air for lithium-ion batteries. Angew Chem Int Ed 57(22):6480–6485

    Article  CAS  Google Scholar 

  41. Mohanty D, Dahlberg K, King DM, David LA, Sefat AS, Wood DL, Daniel C, Dhar S, Mahajan V, Lee M (2016) Modification of Ni-rich FCG NMC and NCA cathodes by atomic layer deposition: preventing surface phase transitions for high-voltage lithium-ion batteries. Sci Rep 6(1):26532–26547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chang M, Wang H, Zheng Y, Li N, Chen S, Wan Y, Yuan F, Shao W, Xu S (2019) Surface modification of hollow microsphere Li1.2Ni1/3Co1/3Mn1/3O2 cathode by coating with CoAl2O4. J Solid State Electrochem 23(2):607–613

    Article  CAS  Google Scholar 

  43. Huang B, Li X, Wang Z, Guo H, Shen L, Wang J (2014) A comprehensive study on electrochemical performance of Mn-surface-modified LiNi0.8Co0.15Al0.05O2 synthesized by an in situ oxidizing-coating method. J Power Sources 252:200–207

    Article  CAS  Google Scholar 

  44. Makimura Y, Zheng S, Ikuhara Y, Ukyo Y (2012) Microstructural observation of LiNi0.8Co0.15Al0.05O2 after charge and discharge by scanning transmission electron microscopy. J Electrochem Soc 159(7):A1070–A1073

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Mohammadi-Manesh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loghavi, M.M., Mohammadi-Manesh, H. & Eqra, R. LiNi0.8Co0.15Al0.05O2 coated by chromium oxide as a cathode material for lithium-ion batteries. J Solid State Electrochem 23, 2569–2578 (2019). https://doi.org/10.1007/s10008-019-04342-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04342-1

Keywords

Navigation