Skip to main content
Log in

Electrochemical determination of levofloxacin drug at poly(clayton yellow)/carbon paste electrode

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

An effortless and quick analytical method was proposed for the determination of levofloxacin at poly(clayton yellow)/carbon paste electrode. It was fabricated by facile electro-polymerization manner using cyclic voltammetry. The proposed poly(clayton yellow)/carbon paste electrode and carbon paste electrode were characterized by field emission scanning electron microscope, electrochemical impedance spectroscopy, energy-dispersive X-ray spectroscopy, and electrochemical methods. It generates a clear and intense peak for levofloxacin (0.1 mM) by regulating over-potential as compared to carbon paste electrode. Under optimized conditions, differential pulse voltammetry was applied for the determination of levofloxacin in the range from 0.2 to 5.0 µM with a low detection and quantification limits of 17.1 nM and 57.5 nM, respectively. Finally, real-time analysis was performed in blood serum sample with excellent recovery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yan HY, Qiao FX, Row KH (2007) Anal Chem 79:8242

    Article  CAS  PubMed  Google Scholar 

  2. Yang L, Gong M, Jiang X, Chen Y, Han X, Song K, Sun X, Zhang Y, Zhao B (2016) Colloids Surf A Physicochem Eng Asp 508:142

    Article  CAS  Google Scholar 

  3. Asseray N, Bourigault C, Boutoille D, Happi L, Touchais S, Corvec S, Bemer P, Navas D (2016) Int J Antimicrob Agents 47:478

    Article  CAS  PubMed  Google Scholar 

  4. Faria AF, de Souza MV, de Almeida MV, de Oliveira MA (2006) Anal Chim Acta 579:185

    Article  CAS  PubMed  Google Scholar 

  5. Hidi IJ, Jahn M, Pletz MW, Weber K, Cialla-May D, Popp J (2016) J Phys Chem C 120:20613

    Article  CAS  Google Scholar 

  6. Czyrski A, Anusiak K, Tezyk A (2019) Sci Rep 9:3621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Aversano MG, Schroeder J, Citterio A, Scibilia J, Gamba C, Balossi LG, Mascheri A, Losappio LM, Pastorello EA (2014) Clin Transl Allergy 4:P91

    Article  PubMed Central  Google Scholar 

  8. Hadow LJ, Sekhar MC, Hajela V, Rao GG (2003) J Antimcrob Chemother 51:747

    Article  CAS  Google Scholar 

  9. Borowiec J, Yan K, Tin CC, Zhang JD (2015) J Electrochem Soc 162:H164

    Article  CAS  Google Scholar 

  10. Martin KL, Silva D, Simoes RP, Cesarino I (2018) Electroanalysis 30:1

    Article  Google Scholar 

  11. Dumka VK (2007) J Vet Sci 8:357

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen TS, Huang KL, Chen JL, Chen B (2012) Environ Contam Tox 89:1284

    Article  CAS  Google Scholar 

  13. Huet AC, Charlier C, Tittlemier SA, Singh G, Benrejeb S, Delahaut P (2006) J Agric Food Chem 54:2822

    Article  CAS  PubMed  Google Scholar 

  14. Tsai Y, Bair M, Hu C (2007) J Chin Chem Soc 54:991

    Article  CAS  Google Scholar 

  15. Czyrski A, Szałek E (2016) J Anal Chem 71:840

    Article  CAS  Google Scholar 

  16. Rkik M, Brahim MB, Samet Y (2017) J Electroanal Chem 794:175

    Article  CAS  Google Scholar 

  17. Li C, Fu J, Tan X, Song X, Li Q (2019) Anal Methods 11:4099

    Article  CAS  Google Scholar 

  18. Švorc Ľ (2013) Int J Electrochem Sci 8:5755

    Google Scholar 

  19. D’Souza ES, Manjunatha JG, Raril C, Tigari G, Pushpanjali PA (2020) Anal Bioanal Chem Res 7:461

    Google Scholar 

  20. Labib M, Sargent EH, Kelley SO (2016) Chem Rev 116:9001

    Article  CAS  PubMed  Google Scholar 

  21. Zanfrognini B, Pigani L, Zanardi C (2020) J Solid State Electrochem 24:2603

    Article  CAS  Google Scholar 

  22. Bobacka J (2020) J Solid State Electrochem 24:2039

    Article  CAS  Google Scholar 

  23. Shashanka R, Jayaprakash GK, Prakashaiah BG, Kumar M, Kumara Swamy BE (2021). Mater Res Innov. https://doi.org/10.1080/14328917.2021.1945795

    Article  Google Scholar 

  24. Tajik S, Orooji Y, Ghazanfari Z, Karimi F, Beitollahi H, Rajender SV, Ho WJ, Mohammadreza S (2021) Food Measure 15:3837

    Article  Google Scholar 

  25. Shashanka R, Chaira D, Kumara Swamy BE (2016) Int J Sci Eng Res 7:1275

    Google Scholar 

  26. Orooji Y, Asrami PN, Beitollahi H, Tajik S, Alizadeh M, Salmanpour S, Baghayeri M, Rouhi J, Sanati AL, Karimi F (2021) Food Measure 15:4098

    Article  Google Scholar 

  27. Shashanka R, Chaira D, Kumara Swamy BE (2015) Int J Electrochem Sci 10:5586

    CAS  Google Scholar 

  28. Tajik S, Lohrasbi-Nejad A, Peyman MJ, Mohammad BA, Parisa S, Beitollahi H (2022) Food Measure 16:722

    Article  Google Scholar 

  29. Tkach VV, Martins J, Ivanushko YG, Yagodynets PI (2022) Biointerface Res Appl Chem 12:4028

    Google Scholar 

  30. Tigari G, Manjunatha JG, D’Souza ES, Sreeharsha N (2021) ChemistrySelect 6:2700

    Article  CAS  Google Scholar 

  31. Manjunatha JG, Deraman M, Basri NH, Talib IA (2014) Adv Mat Res 895:447

    Google Scholar 

  32. Tigari G, Manjunatha JG (2019) J Anal Test 3:331

    Article  Google Scholar 

  33. Berkes BB, Bandarenka AS, Inzelt G (2015) J Phys Chem C 119:1996

    Article  CAS  Google Scholar 

  34. Shashanka R (2015) Int J Sci Eng Res 6:1863

    Google Scholar 

  35. Shashanka R, Kumara Swamy BE (2020) Phys Chem Res 8:1

    Google Scholar 

  36. Garkani F, Beitollahi H, Tajik S, Jahani S (2019) Anal Bioanal Chem Res 6:69

    Google Scholar 

  37. Shahsavari M, Mortazavi M, Tajik S, Sheikhshoaie I, Beitollahi H (2022) Micromachines 13:88

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tajik S, Askari MB, Ahmadi SA, Nejad FG, Dourandish Z, Razavi R, Beitollahi H, Bartolomeo AD (2022) Nanomaterials 12:491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Edwin SDS, Manjunatha JG, Raril C, Girish T, Arpitha HJ (2021) Surfaces 2021:191

    Google Scholar 

  40. Tigari G, Manjunatha JG (2020) J Sci: Adv Mater Devices 5:56

    Google Scholar 

  41. Hareesha N, Manjunatha JG (2021) Sci Rep 11:12797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Girish T, Manjunatha JG, Pushpanjali PA, Prinith NS, Ravishankar DK, Siddaraju G (2021) J Electrochem Sci Eng 11:27

    CAS  Google Scholar 

  43. Sangili A, Veerakumar P, Chen SM, Rajkumar C, Lin KC (2019) Microchim Acta 186:299

    Article  CAS  Google Scholar 

  44. Raril C, Manjunatha JG, Nanjundaswamy L, Siddaraju G, Ravishankar DK, Fattepur S, Niranjan E (2018) Anal Bioanal Electrochem 10:1479

    CAS  Google Scholar 

  45. Liu C, Xie D, Liu P, Xie S, Wang S, Cheng F, Zhang M, Wang L (2019) Microchim Acta 186:21

    Article  CAS  Google Scholar 

  46. Ghanbari MH, Nasrabadi MR, Sobati H (2019) Anal Bioanal Electrochem 11:189

    CAS  Google Scholar 

  47. Radi A, El Ries MA, Kandil S (2003) Anal Chim Acta 495:61

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Manjunatha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tigari, G., Manjunatha, J.G., Souza, E.D. et al. Electrochemical determination of levofloxacin drug at poly(clayton yellow)/carbon paste electrode. Monatsh Chem 153, 311–319 (2022). https://doi.org/10.1007/s00706-022-02910-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-02910-2

Keywords

Navigation