Skip to main content
Log in

New tripodal ligand on the triphenylphosphine oxide platform with 1,2,3-triazole side arms: synthesis, structure, coordination, and extraction properties

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

New hybrid tripodal propeller ligands on the triphenylphosphine oxide platform with triazole rings in the side arms and alkyl and aryl substituents in the triazole fragments have been synthesized by the click reaction. Composition and structure of the prepared compounds have been established by vibrational (IR, Raman) and multinuclear (1H, 13C, 31P) NMR spectroscopy, elemental analysis, and mass spectrometry. Coordination and extraction properties of the prepared compounds toward Pd(II) have been studied by the example of one of the ligands.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sahoo SK, Kim G-D, Choi H-J (2016) J Photochem Photobiol C Photochem Rev 30

  2. Silva F, Fernandes C, Campello MPC, Paulo A (2017) Polyhedron 125:186

    CAS  Google Scholar 

  3. Lim J, Lynch VM, Edupuganti R, Ellington A, Anslyn EV (2016) Dalton Trans 45:10585

    CAS  PubMed  Google Scholar 

  4. Phanopoulos A, Miller PW, Long NJ (2015) Coord Chem Rev 299:39

    CAS  Google Scholar 

  5. Batke S, Sietzen M, Wadepohl H, Ballmann J (2014) Inorg Chem 53:4144

    CAS  PubMed  Google Scholar 

  6. Saad FA, Buurma NJ, Amoroso AJ, Knight JC, Kariuki BM (2012) Dalton Trans 41:4608

    CAS  PubMed  Google Scholar 

  7. Gale PA (2011) Acc Chem Res 44:216

    CAS  PubMed  Google Scholar 

  8. Khansari ME, Johnson CR, Basaran I, Nafis A, Wang J, Leszczynski J, Hossain MA (2015) RSC Adv 5:17606

    PubMed  PubMed Central  Google Scholar 

  9. Beletskiy EV, Wang XB, Kass SR (2016) J Phys Chem A 120:8309

    CAS  PubMed  Google Scholar 

  10. Gale PA, Davis JT, Quesada R (2017) Chem Soc Rev 46:2497

    CAS  PubMed  Google Scholar 

  11. Mazik M (2009) Chem Soc Rev 38:935

    CAS  PubMed  Google Scholar 

  12. Stewart CD, Pedraza M, Arman H, Fan H-J, Schilling EL, Szpoganicz B, Musie GT (2015) J Inorg Biochem 149:25

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Stewart CD, Arman H, Bawazir H, Musie GT (2014) Inorg Chem 53:10974

    CAS  PubMed  Google Scholar 

  14. Leoncini A, Ansari SA, Mohapatra PK, Boda A, Ali SM, Sengupta A, Huskens J, Verboom W (2017) Dalton Trans 46:1431

    CAS  PubMed  Google Scholar 

  15. Coburn KM, Hardy DA, Patterson MG, McGraw SN, Peruzzi MT, Boucher F, Beelen B, Sartain HT, Neils T, Lawrence CL, Staples RJ, Werner EJ, Biros SM (2016) Inorg Chim Acta 449:96

    CAS  Google Scholar 

  16. Sartain HT, McGraw SN, Lawrence CL, Werner EJ, Biros SM (2015) Inorg Chim Acta 426:126

    CAS  Google Scholar 

  17. Matloka K, Sah AK, Peters MW, Srinivasan P, Gelis AV, Regalbuto M, Scott MJ (2007) Inorg Chem 46:10549

    CAS  PubMed  Google Scholar 

  18. Sharova EV, Artyushin OI, Turanov AN, Karandashev VK, Meshkova SB, Topilova ZM, Odinets IL (2012) Centr Eur J Chem 10:146

    CAS  Google Scholar 

  19. Kudryavtsev IY, Baulina TV, Pasechnik MP, Aysin RR, Matveev SV, Petrovskii PV, Nifant’ev EE (2013) Russ Chem Bull 62:1086

    CAS  Google Scholar 

  20. Kudryavtsev IY, Baulina TV, Pasechnik MP, Matveev SV, Matveeva AG (2014) Phosphorus. Sulfur Silicon Relat Elem 189:946

    CAS  Google Scholar 

  21. Matveeva AG, Kudryavtsev IY, Pasechnik MP, Vologzhanina AV, Baulina TV, Vavina AV, Sukat GY, Matveev SV, Godovikov IA, Turanov AN, Karandashev VK, Brel VK (2018) Polyhedron 142:71

    CAS  Google Scholar 

  22. Turanov AN, Matveeva AG, Kudryavtsev IY, Pasechnik MP, Matveev SV, Godovikova MI, Baulina TV, Karandashev VK, Brel VK (2019) Polyhedron 161C:276

    Google Scholar 

  23. Dam HH, Reinhoudt DN, Verboom W (2007) Chem Soc Rev 36:367

    CAS  PubMed  Google Scholar 

  24. Aromí G, Barrios LA, Roubeau O, Gamez P (2011) Coord Chem Rev 255:485

    Google Scholar 

  25. Huang D, Zhao P, Astru D (2014) Coord Chem Rev 272:145

    CAS  Google Scholar 

  26. Schulze B, Schubert US (2014) Chem Soc Rev 43:2522

    CAS  PubMed  Google Scholar 

  27. Kacprzak K, Skiera I, Piasecka M, Paryzek Z (2016) Chem Rev 116:5689

    CAS  PubMed  Google Scholar 

  28. Lukashev NV, Grabovyi GA, Erzunov DA, Kazantsev AV, Latyshev GV, Averin AD, Beletskaya IP (2017) Beilstein J Org Chem 13:564

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Keivanloo A, Lashkari S, Sepehri S, Bakherad M, Abbaspour S (2020) Monatsh Chem 151:935

    CAS  Google Scholar 

  30. Schweinfurth D, Pattacini R, Strobel S, Sarkar B (2009) Dalton Trans 42:9291

    Google Scholar 

  31. Lo WKC, Huff GS, Cubanski JR, Kennedy ADW, McAdam CJ, McMorran DA, Gordon KC, Crowley JD (2015) Inorg Chem 54:1572

    CAS  PubMed  Google Scholar 

  32. Hurtado J, Rojas RS, Pérez EG, Valderrama M (2013) J Chil Chem Soc 58:1534

    CAS  Google Scholar 

  33. Crowley JD, Gavey EL (2010) Dalton Trans 39:4035

    CAS  PubMed  Google Scholar 

  34. Turanov AN, Karandashev VK, Artyushin OI, Sharova EV, Genkina GK, Yarkevich AN (2014) Solvent Extr Ion Exch 32:669

    CAS  Google Scholar 

  35. Nozoe A, Morisada S, Ohto K, Kawakita H (2014) Solvent Extr Ion Exch 33:56

    Google Scholar 

  36. Turanov AN, Karandashev VK, Sharova EV, Genkina GK, Artyushin OI (2015) RSC Adv 5:27640

    CAS  Google Scholar 

  37. Kudryavtsev IY, Bykhovskaya OV, Aladzheva IM, Baulina TV, Brel VK (2017) Russ J Gen Chem 87:2744

    CAS  Google Scholar 

  38. Livant PD, Mao J, Webb TR (1996) Acta Cryst C52:2924

    CAS  Google Scholar 

  39. Bykhovskaya OV, Matveeva AG, Pasechnik MP, Vologzhanina AV, Matveev SV, Kudryavtsev IY, Baulina TV, Brel VK (2019) Russ J Gen Chem 89:2400

    CAS  Google Scholar 

  40. Baulina TV, Kudryavtsev IY, Smolyakov AF, Pasechnik MP, Brel VK (2018) Heteroat Chem 29:e21454

    Google Scholar 

  41. Baulina TV, Pasechnik MP, Kudryavtsev IY, Bykhovskaya OV, Sukat GY, Smol’yakov AF, Anikina LV, Brel VK (2020) J Mol Struct 1217:128324

    CAS  Google Scholar 

  42. Pasechnik MP, Matveeva AG, Lyssenko KA, Aysin RR, Smol’yakov AF, Zubavichusc YV, Godovikov IA, Goryunov EI (2019) J Mol Struct 1175:874

    CAS  Google Scholar 

  43. Durrell AC, Gray HB, Hazari N, Incarvito CD, Liu J, Yan EC-Y (2010) Cryst Growth Des 10:1482

    CAS  Google Scholar 

  44. Nakamoto K (1997) IR and Raman Spectra of Inorganic and Coordination Compounds. Wiley, New York

    Google Scholar 

  45. Kozlov VA, Aleksanyan DV, Korobov MV, Avramenko NV, Aysin RR, Maloshitskaya OA, Korlyukov AS, Odinets IL (2011) Dalton Trans 40:8768

    CAS  PubMed  Google Scholar 

  46. Armarego WLF (2017) Purification of Laboratory Chemicals. Elsevier, Amsterdam

    Google Scholar 

  47. Gel’man NE, Terent’eva EA, Shanina TM, Kiparenko LM, Rezl V (1987) Methods of Quantitative Organic Elemental Microanalysis. Khimiya, Moscow

    Google Scholar 

  48. Sheldrick GM (2015) Acta Cryst A71:3

    Google Scholar 

  49. Spek AL (2015) Acta Cryst C71:9

    Google Scholar 

  50. Sheldrick GM (2015) Acta Cryst C71:3

    Google Scholar 

  51. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Cryst 42:339

    CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Russian Science Foundation (project no. 20–13–00329). Spectral studies were carried out using the equipment of the Center for Molecular Structure Studies, INEOS RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Y. Kudryavtsev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryavtsev, I.Y., Bykhovskaya, O.V., Matveeva, A.G. et al. New tripodal ligand on the triphenylphosphine oxide platform with 1,2,3-triazole side arms: synthesis, structure, coordination, and extraction properties. Monatsh Chem 151, 1705–1713 (2020). https://doi.org/10.1007/s00706-020-02702-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02702-6

Keywords

Navigation