Skip to main content
Log in

Unsymmetrical Tripodal Phosphine Oxide with Triazole Groups: Synthesis and Molecular Structure

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The Mitsunobu reaction of tris(2-hydroxyphenyl)phosphine oxide with 3-butyn-1-ol has afforded bis[2-(3′′-butynyloxy)phenyl](2′-hydroxyphenyl)phosphine oxide, which has been converted into the corresponding triazole via click reaction with PhN3. Asymmetric tripodal ligand containing three 1,2,3-triazole groups in the molecule has been prepared from this triazole via the reaction with propargyl bromide and PhN3. Structure of the ligand has been elucidated by means of single-crystal X-ray diffraction analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Jevric, M., Zheng, T., Meher, N.K., Fettinger, J.C., and Mascal, M., Angew. Chem. Int. Ed., 2011, vol. 50, no. 3, p. 717. https://doi.org/10.1002/anie.201006470

    Article  CAS  Google Scholar 

  2. Long, S.R., Lin, C.-Y., and Anslyn, E.V., J. Coord. Chem., 2017, vol. 70, no. 1, p. 1. https://doi.org/10.1080/00958972.2016.1262949

    Article  CAS  Google Scholar 

  3. Lukashev, N.V., Grabovyi, G.A., Erzunov, D.A., Kazantsev, A.V., Latyshev, G.V., Averin, A.D., and Beletskaya, I.P., Beilstein J. Org. Chem., 2017, vol. 13, p. 564. https://doi.org/10.3762/bjoc.13.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Neumajer, G., Tóth, G., Béni, S., and Noszál, B., Cent. Eur. J. Chem., 2014, vol. 12, no. 1, p. 115. https://doi.org/10.2478/s11532-013-0351-z

    Article  CAS  Google Scholar 

  5. Grewal, S., Roy, S., Kumar, H., Saraswat, M., Bari, N.K., Sinha, S., and Venkataramani, S., Catal. Sci. Technol., 2020, vol. 10, no. 20, p. 7027. https://doi.org/10.1039/D0CY01090A

    Article  CAS  Google Scholar 

  6. Jain, A., Jain, Y., Gupta, R., and Agarwal, M., J. Fluor. Chem., 2018, vol. 212, p. 153. https://doi.org/10.1016/j.jfluchem.2018.06.005

    Article  CAS  Google Scholar 

  7. Erzunov, D.A., Latyshev, G.V., Averin, A.D., Beletskaya, I.P., and Lukashev, N.V., Eur. J. Org. Chem., 2015, vol. 2015, no. 28, p. 6289. https://doi.org/10.1002/ejoc.201500835

    Article  CAS  Google Scholar 

  8. Lukashev, N.V., Erzunov, D.A., Latyshev, G.V., Averin, A.D., and Beletskaya, I.P., Russ. J. Org. Chem., 2018, vol. 54, no. 1, p. 45. https://doi.org/10.1134/S1070428018010025

    Article  CAS  Google Scholar 

  9. Bharadwaj, V., Park, J.E., Sahoo, S.K., and Choi, H.-J., ChemistrySelect, 2019, vol. 4, no. 36, p. 10895. https://doi.org/10.1002/slct.201902718

    Article  CAS  Google Scholar 

  10. Tümay, S.O., J. Lumin., 2021, vol. 231, p. 117813. https://doi.org/10.1016/j.jlumin.2020.117813

    Article  CAS  Google Scholar 

  11. Zhu, J.-H., Fan, X.-T., and Cao, Q.-Y., Inorg. Chim. Acta, 2016, vol. 451, p. 111. https://doi.org/10.1016/j.ica.2016.07.021

    Article  CAS  Google Scholar 

  12. Sun, J., Xu, X., Yu, G., Li, W., and Shi, J., Tetrahedron, 2018, vol. 74, no. 9, p. 987. https://doi.org/10.1016/j.tet.2018.01.013

    Article  CAS  Google Scholar 

  13. del Carmen González, M., Otón, F., Espinosa, A., Tárraga, A., and Molina, P., Org. Biomol. Chem., 2015, vol. 13, no. 5, p. 1429. https://doi.org/10.1039/c4ob02135e

    Article  Google Scholar 

  14. Ghosh, K., Kar, D., Joardar, S., Samadder, A., and Khuda-Bukhsh, A.R., RSC Adv., 2014, vol. 4, no. 23, p. 11590. https://doi.org/10.1039/c3ra45018j

    Article  CAS  Google Scholar 

  15. Tümay, S.O. and Yeşilot, S.J., Photochem. Photobiol. (A), 2019, vol. 372, p. 156. https://doi.org/10.1016/j.jphotochem.2018.12.012

    Article  CAS  Google Scholar 

  16. Götzke, L., Schaper, G., März, J., Kaden, P., Huittinen, N., Stumpf, T., Kammerlander, K.K.K., Brunner, E., Hahn, P., Mehnert, A., Kersting, B., Henle, T., Lindoy, L.F., Zanoni, G., and Weigand, J.J., Coord. Chem. Rev., 2019, vol. 386, p. 267. https://doi.org/10.1016/j.ccr.2019.01.006

    Article  CAS  Google Scholar 

  17. Pawara, S.V., Upadhyaya, P.K., Kumbhara, N., Buradea, S., Patilb, R., and Dhavalea, D.D., Carbohydr. Res., 2019, vol. 485, p. 107815. https://doi.org/10.1016/j.carres.2019.107815

    Article  CAS  Google Scholar 

  18. Harit, T., Bellaouchi, R., Rokni, Y., Riahi, A., Malek, F., and Asehraou, A., Chem. Biodiversity, 2017, vol. 14, no. 12, p. e1700351. https://doi.org/10.1002/cbdv.201700351

  19. Thota, B.N.S., Savyasachi, A.J., Lukashev, N., Beletskaya, I., and Maitra, U., Eur. J. Org. Chem., 2014, vol. 7, p. 1406. https://doi.org/10.1002/ejoc.201301443

    Article  CAS  Google Scholar 

  20. Schweinfurth, D., Demeshko, S., Hohloch, S., Steinmetz, M., Brandenburg, J.G., Dechert, S., Meyer, F., Grimme, S., and Sarkar, B., Inorg. Chem., 2014, vol. 53, no. 16, p. 8203. https://doi.org/10.1021/ic500264k

    Article  CAS  PubMed  Google Scholar 

  21. Hagiwara, H., Minoura, R., Okada, S., and Sunatsuki, Y., Chem. Lett., 2014, vol. 43, no. 6, p. 950. https://doi.org/10.1246/cl.140133

    Article  CAS  Google Scholar 

  22. Hapuarachchige, S. and Artemov, D., Top Magn. Reson. Imaging., 2016, vol. 25, no. 5, p. 205. https://doi.org/10.1097/RMR.0000000000000099

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hohloch, S., Deibel, N., Schweinfurth, D., Frey, W., and Sarkar, B., Eur. J. Inorg. Chem., 2014, vol. 2014, no. 12, p. 2131. https://doi.org/10.1002/ejic.201301339

    Article  CAS  Google Scholar 

  24. Schweinfurth, D., Demeshko, S., Khusniyarov, M.M., Dechert, S., Gurram, V., Buchmeiser, M.R., Meyer, F., and Sarkar, B., Inorg. Chem., 2012, vol. 51, no. 14, p. 7592. https://doi.org/10.1021/ic300392e

    Article  CAS  PubMed  Google Scholar 

  25. Weisser, F., Stevens, H., Klein, J., van der Meer, M., Hohloch, S., and Sarkar, B., Chem. Eur. J., 2015, vol. 21, no. 24, p. 8926. https://doi.org/10.1002/chem.201406441

    Article  CAS  PubMed  Google Scholar 

  26. Baschieri, A., Mazzanti, A., Stagni, S., and Sambri, L., Eur. J. Inorg. Chem., 2013, vol. 2013, no. 13, p. 2432. https://doi.org/10.1002/ejic.201201361

    Article  CAS  Google Scholar 

  27. Kudryavtsev, I.Y., Bykhovskaya, O.V., Matveeva, A.G., Baulina, T.V., Pasechnik, M.P., Matveev, S.V., Vologzhanina, A.V., Turanov, A.N., Karandashev, V.K., and Brel, V.K., Monatsh. Chem., 2020, vol. 151, no. 11, p. 1705. https://doi.org/10.1007/s00706-020-02702-6

    Article  CAS  Google Scholar 

  28. Matveeva, A.G., Baulina, T.V., Kudryavtsev, I.Yu., Pasechnik, M.P., Aysin, R.R., Bykhovskaya, O.V., Godovikova, M.I., Matveev, S.V., Turanov, A.N., Karandashev, V.K., and Brel, V.K., Russ. J. Gen. Chem., 2020, vol. 90, no. 12, p. 2338. https://doi.org/10.1134/S107036322012018X

    Article  CAS  Google Scholar 

  29. Matveeva, A.G., Bykhovskaya, O.V., Pasechnik, M.P., Vologzhanina, A.V., Aysin, R.R., Matveev, S.V., Godovikov, I.A., Kudryavtsev, I.Y., Baulina, T.V., and Brel, V.K., Mendeleev Commun., 2022, vol. 32, no. 5, p. 588. https://doi.org/10.1016/j.mencom.2022.09.006

    Article  Google Scholar 

  30. Mitsunobu, O. and Yamada, Y., Bull. Chem. Soc. Japan, 1967, vol. 40, no. 10, p. 2380. https://doi.org/10.1246/bcsj.40.2380

    Article  CAS  Google Scholar 

  31. Mitsunobu, O., Synthesis, 1981, no. 1, p. 1. https://doi.org/10.1055/s-1981-29317

    Article  Google Scholar 

  32. Hughes, D.L., Org. React., 1992, vol. 42, p. 335. https://doi.org/10.1002/0471264180.or042.02

    Article  CAS  Google Scholar 

  33. Zhai, R.L., Xue, Y.S., Liang, T., Mi J., J., and Xu, Z., J. Org. Chem., 2018, Vol. 83, p. 10051. https://doi.org/10.1021/acs.joc.8b01388

  34. Kudryavtsev, I.Yu., Baulina, T.V., Khrustalev, V.N., Petrovskii, P.V., Pasechnik, M.P., and Nifant’ev, E.E., Doklady Chem., 2013, vol. 448, no. 2, p. 55. https://doi.org/10.1134/S0012500813020092

    Article  CAS  Google Scholar 

  35. März, M., Chudoba, J., Kohout, M., and Cibulka, R., Org. Biomol. Chem., 2017, vol. 15, no. 9, p. 1970. https://doi.org/10.1039/c6ob02770a

    Article  PubMed  Google Scholar 

  36. Tornøe, C.W., Christensen, C., and Meldal, M., J. Org. Chem., 2002, vol. 67, no. 9, p. 3057. https://doi.org/10.1021/jo011148j

    Article  CAS  PubMed  Google Scholar 

  37. Dai, Z.-C., Chen, Y.-F., Zhang, M., Li, S.-K., Yang, T.-T., Shen, L., Wang, J.-X., Qian, S.-S., Zhu, H.-L., and Ye, Y.-H., Org. Biomol. Chem., 2015, vol. 13, no. 2, p. 477. https://doi.org/10.1039/C40B01758G

    Article  CAS  PubMed  Google Scholar 

  38. Matveeva, A.G., Vologzhanina, A.V., Pasechnik, M.P., Aysin, R.R., Matveev, S.V., Zubavichus, Y.V., Artyushin, O.I., Sharova, E.V., Godovikov, I.A., and Brel, V.K., Polyhedron, 2022, vol. 215, p. 115680. https://doi.org/10.1016/j.poly.2022.115680

    Article  CAS  Google Scholar 

  39. Bykhovskaya, O.V., Matveeva, A.G., Pasechnik, M.P., Vologzhanina, A.V., Matveev, S.V., Kudryavtsev, I.Yu., Baulina, T.V., and Brel, V.K., Russ. J. Gen. Chem., 2019, vol. 89, no. 12, p. 2400. https://doi.org/10.1134/S1070363219120120

    Article  CAS  Google Scholar 

  40. Baulina, T.V., Pasechnik, M.P., Kudryavtsev, I.Yu., Bykhovskaya, O.V., Sukat, G.Ya., Smol’yakov, A.F., Anikina, L.V., and Brel, V.K., J. Mol. Struct., 2020, vol. 1217, p. 128324. https://doi.org/10.1016/j.molstruc.2020.128324

    Article  CAS  Google Scholar 

  41. Matveeva, A.G., Kudryavtsev, I.Yu., Pasechnik, M.P., Vologzhanina, A.V., Baulina, T.V., Vavina, A.V., Sukat, G.Ya., Matveev, S.V., Godovikov, I.A., Turanov, A.N., Karandashev, V.K., and Brel, V.K., Polyhedron, 2018, vol. 142, p. 71. https://doi.org/10.1016/j.poly.2017.12.025

    Article  CAS  Google Scholar 

  42. Armarego, W.L.F. and Chai, C.L.L., Purification of Laboratory Chemicals, New York: Elsevier, 2009. https://doi.org/10.1134/S0044460X1809024X

  43. Gel’man, N.E., Terent’eva, E.A., Shanina, T.M., and Kiparenko, L.M., Metody kolichestvennogo organicheskogo elementnogo mikroanaliza (Methods for Quantitative Organic Elemental Microanalysis), M.: Himija, 1987, p. 296.

  44. SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

  45. Sheldrick, G.M., Acta Crystalogr. (A), 2015, vol. 71, no. 1, p. 3. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  46. Sheldrick, G.M., Acta Crystallogr. (C), 2015, vol. 71, no. 1, p. 3. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation (grant no. 20-13-00329). Elemental analysis, registration of NMR, IR, and Raman spectra, and X-ray diffraction analysis were supported by the Ministry of Science and Higher Education of the Russian Federation and performed using the research equipment of the Center for Study of Molecular Structure, Institute of Organoelement Compounds, RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Kudryavtsev.

Ethics declarations

V. K. Brel is a member of Editorial Board of the Russian Journal of General Chemistry. Other authors declare that they have no conflicts of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykhovskaya, O.V., Kudryavtsev, I.Y., Baulina, T.V. et al. Unsymmetrical Tripodal Phosphine Oxide with Triazole Groups: Synthesis and Molecular Structure. Russ J Gen Chem 92, 1420–1429 (2022). https://doi.org/10.1134/S1070363222080084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222080084

Keywords:

Navigation