Skip to main content
Log in

Solitonic-like excitations in cations of linear conjugated systems

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A quantum-chemical study of the atomic charges and bond orders in the cations of the linear conjugated systems was performed. It is shown that total charge in the collective system of the π-electrons generates the soliton-like wave of the alternated partial charges along the conjugated chain not only in ground state but also in the excited state. The excitation is accompanied by the change of the soliton phase and the wave dimension. Additionally, it is established that the electron density redistribution at the atoms and bonds also forms the soliton-like wave. In paper, the dependence of the solitonic wave shape on the dimension and section of the polymethine is studied; established regularities in the charge distribution in excited state could be used for the molecular design of organic semiconducting materials.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lackowicz J (2006) Instrumentation for fluorescence spectroscopy. In: Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

  2. Valeur B (2002) In: Zander C, Keller R, Enderlein J (eds) Molecular fluorescence, principles and applications, vol. VI. Single-molecule detection in solution. Wiley-VCH Verlag GmbH, Weinheim

  3. Bach G, Daehne S (1997) In: Sainsbury M (ed) ROOD’S chemistry of carbon compounds, vol IVB. Elsevier Science, Amsterdam

  4. Kachkovskii AD (1997) Russ Chem Rev 66:647

    Article  Google Scholar 

  5. Mishra A, Behera RK, Behera PK, Mishra BK, Behera GB (2000) Chem Rev 100:1973

    Article  CAS  Google Scholar 

  6. Przhonska OV, Webster S, Padilha LA, Hu H, Kachkovski AD, Hagan DJ, Van Stryland EW (2010) In: Advanced Fluorescence Reporters in Chemistry and Biology I, Springer Ser. Fluorescence Two-photon absorption in near-IR conjugated molecules: design strategy and structure-property relations. Springer-Verlag, Berlin

  7. Bricks JL, Kachkovskii AD, Slominskii YuL, Gerasov AO, Popov SV (2015) Dyes Pigm 121:238

  8. Kachkovsky A, Obernikhina N, Prostota Y, Naumenko A, Melnyk D, Yashchuk V (2018) J Mol Struct 1154:606

    Article  CAS  Google Scholar 

  9. Orlando G, Zerbetto F, Zgierski MZ (1991) Chem Rev 91:867

    Article  Google Scholar 

  10. Alain V, Redoglia S, Blanchard-Desce M, Lebus K, Lukaszuk S, Wortmann R, Gubler U, Bosshard C, Gunter P (1999) Chem Phys 245:51

    Article  CAS  Google Scholar 

  11. Kachkovskii AD (2005) Theor Exp Chem 41:139

    Article  CAS  Google Scholar 

  12. Kachkovski AD, Yushchenko DA, Kachkovski GA, Pilipchuk NV (2005) Dyes Pigm 66:223

    Article  CAS  Google Scholar 

  13. Nychyporenko OS, Melnyk OP, Viniychuk OO, Pinchuk-Rugal TM, Brusentsov VA, Pavlenko EL (2014) Int J Quant Chem 114:416

    Article  CAS  Google Scholar 

  14. Terenziani F, Painelli A, Katan C, Charlot M, Blanchard-Desce M (2006) J Am Chem Soc 128:15742

    Article  CAS  Google Scholar 

  15. Lutsyk P, Piryatinski Y, Kachkovsky O, Verbitsky A, Rozhin A (2017) J Phys Chem A 121:8236

    Article  CAS  Google Scholar 

  16. Sanchez-Galvez A, Hunt P, Robb MA, Olivucci M, Vreven T, Schlegel HB (2000) J Am Chem Soc 122:2911

    Article  CAS  Google Scholar 

  17. Dewar MJS (1969) The molecular orbital theory of organic chemistry. McGraw Hill, New York

    Google Scholar 

  18. Ishchenko AA (1991) Russ Chem Rev 60:865

    Article  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2003) Gaussian 03. Gaussian Inc, Wallingford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey D. Kachkovsky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiko, K.O., Dmitruk, I.M., Obernikhina, N.V. et al. Solitonic-like excitations in cations of linear conjugated systems. Monatsh Chem 151, 559–566 (2020). https://doi.org/10.1007/s00706-020-02572-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02572-y

Keywords

Navigation