Skip to main content
Log in

Optical charge transfer transitions in supramolecular fullerene and porphyrin compounds

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

By the DFT method with the planar wave basis set and in the PAW approximation the geometric and electronic structures of four supramolecular compounds of porphyrin and fullerene molecules in the crystalline state are performed: H2TPP·C60·3 toluene, H2TpivPP·C60, H2T3,5-dimethylPP·C70·4 toluene, and NiT4-methylPP·2C70·2 toluene. The geometry is optimized using the PBE functional and the Grimme DFT-D2 dispersion interaction correction. The electronic structure and absorbance spectra are calculated using the HSE functional. It is shown that the H2TPP·C60·3 toluene structure having a sufficiently wide absorbance wavelength range, which results in a photoinduced electron transition from the higher occupied states formed by porphyrin molecules to the lower unoccupied states formed by fullerene molecules, is most promising for the design of photogalvanic elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. de Wild, A. Meijerink, J. K. Rath, et al., Energy Environ. Sci., 4, No. 12, 4835 (2011).

    Article  CAS  Google Scholar 

  2. A. Luque, J. Appl. Phys., 110, No. 3, 031301 (2011).

    Article  Google Scholar 

  3. D. González-Rodríguez and G. Bottari, J. Porphyrins Phthalocyanines, 13, Nos. 4/5, 624 (2009).

    Article  Google Scholar 

  4. C. W. Tang, Appl. Phys. Lett., 48, No. 2, 183 (1986).

    Article  CAS  Google Scholar 

  5. J. You, L. Dou, K. Yoshimura, et al., Nat. Commun., 4, 1446 (2013).

    Article  Google Scholar 

  6. C. W. Schlenker and M. E. Thompson, Chem. Commun., 47, No. 13, 3702 (2011).

    Article  CAS  Google Scholar 

  7. D. Gust, T. A. Moore, and A. L. Moore, Acc. Chem. Res., 34, No. 1, 40 (2011).

    Article  Google Scholar 

  8. M. E. El-Khoulya, O. Ito, P. M. Smith, et al., J. Photochem. Photobiol. C, 5, No. 1, 79 (2004).

    Article  Google Scholar 

  9. D. Wróbel and A. Graja, Coord. Chem. Rev., 255, Nos. 21/22, 2555 (2011).

    Article  Google Scholar 

  10. M. D. Ward, Chem. Soc. Rev., 26, No. 5, 365 (1997).

    Article  CAS  Google Scholar 

  11. H. Imahori, K. Tamaki, D. M. Guldi, et al., J. Am. Chem. Soc., 123, No. 11, 2607 (2001).

    Article  CAS  Google Scholar 

  12. H. Imahori, D. M. Guldi, K. Tamaki, et al., J. Am. Chem. Soc., 123, No. 27, 6617 (2001).

    Article  CAS  Google Scholar 

  13. H. Imahori, Y. Mori, and Y. Matano, J. Photochem. Photobiol. C, 4, No. 1, 51 (2003).

    Article  CAS  Google Scholar 

  14. K. Ohkubo and S. Fukuzumi, Bull. Chem. Soc. Jpn., 82, No. 3, 303 (2009).

    Article  CAS  Google Scholar 

  15. N. V. Tkachenko, H. Lemmetyinen, J. Sonoda, et al., J. Phys. Chem. A, 107, No. 42, 8834 (2003).

    Article  CAS  Google Scholar 

  16. T. Umeyama and H. Imahori, J. Phys. Chem. C, 117, No. 7, 3195 (2013).

  17. G. Bottari, O. Trukhina, M. Ince, et al., Coord. Chem. Rev., 256, Nos. 21/22, 2453 (2012).

    Article  CAS  Google Scholar 

  18. O. Ito and F. D’Souza, Molecules, 17, No. 5, 5816 (2012).

    Article  CAS  Google Scholar 

  19. S. Fukuzumi, Phys. Chem. Chem. Phys., 10, No. 17, 2283 (2008).

    Article  CAS  Google Scholar 

  20. F. D’Souza, E. Maligaspe, K. Ohkubo, et al., J. Am. Chem. Soc., 131, No. 25, 8787 (2009).

    Article  Google Scholar 

  21. P. O. Krasnov, Y. M. Milyutina, and N. S. Eliseeva, Internet Electron. J. Mol. Des., 9, No. 2, 20 (2010).

    CAS  Google Scholar 

  22. H. Yamada, K. Ohkubo, D. Kuzuhara, et al., J. Phys. Chem. B, 114, No. 45, 14717 (2010).

    Article  CAS  Google Scholar 

  23. N. Agnihotri, J. Photochem. Photobiol. C, 18, 18 (2014).

  24. H. Imahori, Y. Kashiwagi, T. Hasobe, et al., Thin Solid Films, 451/452, 580 (2004).

    Article  Google Scholar 

  25. N. K. Subbaiyan, I. Obraztsov, C. A. Wijesinghe, et al., J. Phys. Chem. C, 113, No. 20, 8982 (2009).

    Article  CAS  Google Scholar 

  26. H. Lemmetyinen, N. V. Tkachenko, A. Efimov, et al., Phys. Chem. Chem. Phys., 13, No. 2, 397 (2011).

    Article  CAS  Google Scholar 

  27. M. H. Lee, J. W. Kim, and C. Y. Lee, J. Organomet. Chem., 761, 20 (2014).

    Article  CAS  Google Scholar 

  28. T. Hasobe, K. Saito, P. V. Kamat, et al., J. Mater. Chem., 17, No. 39, 4160 (2007).

    Article  CAS  Google Scholar 

  29. P. K. Poddutoori, A. S. D. Sandanayaka, T. Hasobe, et al., J. Phys. Chem. B, 114, No. 45, 14348 (2010).

    Article  CAS  Google Scholar 

  30. H. Imahori, H. Norieda, H. Yamada, et al., J. Am. Chem. Soc., 123, No. 1, 100 (2001).

    Article  CAS  Google Scholar 

  31. Y. Kureishi, H. Tamiaki, H. Shiraishi, et al., Bioelectrochem. Bioenerg., 48, No. 1, 95 (1999).

    Article  CAS  Google Scholar 

  32. T. Konishi, A. Ikeda, and S. Shinkai, Tetrahedron, 61, No. 21, 4881 (2005).

    Article  CAS  Google Scholar 

  33. F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer, et al., Chem. Rev., 105, No. 4, 1491 (2005).

    Article  CAS  Google Scholar 

  34. Q. Yan, Z. Luo, K. Cai, et al., Chem. Soc. Rev., 43, No. 12, 4199 (2014).

    Article  CAS  Google Scholar 

  35. T. Kamimura, K. Ohkubo, Y. Kawashima, et al., Chem. Sci., 4, No. 4, 1451 (2013).

    Article  CAS  Google Scholar 

  36. M. Gervaldo, P. A. Liddell, G. Kodis, et al., Photochem. Photobiol. Sci., 9, No. 7, 890 (2010).

    Article  CAS  Google Scholar 

  37. M. R. Wasielewski, Acc. Chem. Res., 42, No. 12, 1910 (2009).

    Article  CAS  Google Scholar 

  38. P. D. W. Boyd, M. C. Hodgson, C. E. F. Rickard, et al., J. Am. Chem. Soc., 121, No. 45, 10487 (1999).

    Article  CAS  Google Scholar 

  39. P. Hohenberg, Phys. Rev., 136, No. 3B, B864 (1964).

    Article  Google Scholar 

  40. W. Kohn and L. J. Sham, Phys. Rev., 140, No. 4A, A1133 (1965).

    Article  Google Scholar 

  41. G. Kresse and J. Hafner, Phys. Rev. B, 47, No. 1, 558 (1993).

    Article  CAS  Google Scholar 

  42. G. Kresse and J. Hafner, Phys. Rev. B, 49, No. 20, 14251 (1994).

    Article  CAS  Google Scholar 

  43. G. Kresse, Phys. Rev. B, 59, No. 3, 1758 (1999).

    Article  CAS  Google Scholar 

  44. P. E. Blöchl, Phys. Rev. B, 50, No. 24, 17953 (1994).

  45. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, No. 18, 3865 (1996).

    Article  CAS  Google Scholar 

  46. S. Grimme, J. Comp. Chem., 27, No. 15, 1787 (2006).

    Article  CAS  Google Scholar 

  47. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys., 118, No. 18, 8207 (2003).

    Article  CAS  Google Scholar 

  48. M. Gajdoš, K. Hummer, G. Kresse, et al., Phys. Rev. B, 73, No. 4, 045112 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. O. Krasnov.

Additional information

Translated from Zhurnal Strukturnoi Khimii, Vol. 57, No. 4, pp. 681-687, May-June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnov, P.O., Kuzubov, A.A., Kholtobina, A.S. et al. Optical charge transfer transitions in supramolecular fullerene and porphyrin compounds. J Struct Chem 57, 642–648 (2016). https://doi.org/10.1134/S0022476616040028

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476616040028

Keywords

Navigation