Skip to main content
Log in

The Solitonic Nature of the Electronic Structure of the Ions of Linear Conjugated Systems

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Abstract

Features of the electron density distribution in the ground and excited states, the position of the energy levels, and the equilibrium molecular geometry of the ions of linear π-electron systems, including conjugated polymers and oligomers, cationic and anionic polymethine dyes, and the radical-ions of α,ω-substituted polyenes, are reviewed. By using the soliton concept it was possible to explain many unusual properties of this type of organic compound: The quasimetallic conductivity, the marked change in the spectral characteristics of ionic dyes absorbing and emitting light in the near IR region of the spectrum, etc. It was shown on the basis of semiempirical and nonempirical calculations that the charges in collective π-electronic systems form soliton waves, the width of which does not depend on the length of the molecule. In the excited state the size of the solitons increases significantly. The introduction of donor and acceptor terminal groups can destroy the symmetry of the charge distribution and molecular geometry at a conjugation chain of critical length exceeding the dimensions of the soliton. It was established that the injection of electrons/holes not only leads to the appearance of a soliton level at the center of the energy gap but is also accompanied by significant displacement of the top of the valence band and the bottom of the conduction band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. L. Bredas, D. Belionne, J. Cornil, et al., Synth. Met., 125, 107–116 (2002).

    Article  Google Scholar 

  2. A. S. Davydov, Solitons in Molecular Systems [in Russian], Naukova Dumka, Kiev (1984).

    Google Scholar 

  3. J. L. Bredas and G. B. Street, Accounts Chem. Revs., 18, 309–315 (1985).

    Article  Google Scholar 

  4. A. O. Patil, A. J. Heeger, and F. Wudl, Chem. Rev., 88, 183–200 (1988).

    Article  Google Scholar 

  5. L. M. Tolbert, Accounts Chem. Res., 25, 561–568 (1992).

    Article  Google Scholar 

  6. J. R. Reimers, J. S. Craw, G. B. Bacskay, et al., Biosystems, 35, 107–111 (1995).

    Article  PubMed  Google Scholar 

  7. J. G. Gaudiello, G. E. Kellog, S. M. Tetrick, et al., J. Am. Chem. Soc., 111, 5259–5271 (1989).

    Article  Google Scholar 

  8. V. A. Kuprievich, Teor. Eksp. Khim., 22, No.4, 385–393 (1986).

    Google Scholar 

  9. A. Yu. Kon and I. A. Misurkin, Teor. Eksp. Khim., 22, No.2, 146–153 (1986).

    Google Scholar 

  10. A. Yu. Kon and I. A. Misurkin, Teor. Eksp. Khim., 25, No.4, 393–398 (1989).

    Google Scholar 

  11. V. D. Pokhodenko and N. F. Guba, Teor. Eksp. Khim., 30, No.5, 241–263 (1994).

    Google Scholar 

  12. A. D. Kachkovskii, Usp. Khim., 66, 715–734 (1997).

    Google Scholar 

  13. A. A. Ishchenko, Usp. Khim., 60, 865–880 (1991).

    Google Scholar 

  14. N. Tyutyulkov, J. Fabian, A. Mehlhorn, et al., Polymethine Dyes. Structure and Properties, St. Kliment Ohridski Univ. Press, Sofia (1991).

    Google Scholar 

  15. F. Meyers, S. R. Marder, and J. W. Perry, Chemistry of Advanced Materials, L. V. Interrante, M. J. Hampden-Smith (eds.), Wiley-VCH Inc., New York, etc. (1998), pp. 207–268.

    Google Scholar 

  16. P. Cronstrand, Yi Luo, and H. Agren, Chem. Phys. Lett., 352, 262–269 (2002).

    Article  Google Scholar 

  17. W. Rettig and M. Dekhtyar, Chem. Phys., 293, 75–90 (2003).

    Article  Google Scholar 

  18. D. Beljonne, Z. Shuai, J. L. Bredas, et al., Chem. Phys. Lett., 279, 1–8 (1997).

    Article  Google Scholar 

  19. M. Albota, D. Beljonne, J. L. Bredas, et al., Science, 281, 653–656 (1998).

    Article  Google Scholar 

  20. V. M. Geskin, M. Yu. Balakina, J. Li, et al., Synth. Met., 116, 263–267 (2001).

    Article  Google Scholar 

  21. A. I. Kiprianov, Color and Structure of Cyanine Dyes [in Russian], Naukova Dumka, Kiev (1979).

    Google Scholar 

  22. L. G. S. Brooker, Rev. Mod. Phys., 14, 275–293 (1942).

    Article  Google Scholar 

  23. S. Huenig and H. Berneth, Top. Curr. Chem., 92, 1–44 (1980).

    Google Scholar 

  24. S. Huenig, D. Schewtzow, H. Schlaf, et al., Ann. Chem., 1436–1449 (1974).

  25. S. Huenig and F. Linhard, Ann. Chem., 2116–2189 (1975).

  26. S. Huenig and F. Linhard, Ann. Chem., 317–335 (1976).

  27. S. Huenig and H. C. Steinmetzer, Ann. Chem., 1060–1089 (1976).

  28. A. Zedler and S. Kulpe, J. Prakt. Chem., 317, 199–213 (1975).

    Article  Google Scholar 

  29. Yu. L. Slominskii, S. V. Popov, I. V. Repyakh, et al., Teor. Eksp. Khim., 23, No.6, 687–692 (1987).

    Google Scholar 

  30. R. Radeglia, E. Gey, K.-D. Nolte, et al., J. Prakt. Chem., 315, 586–599 (1973).

    Article  Google Scholar 

  31. S. Kulpe, A. Zedler, S. Daehne, et al., J. Prakt. Chem., 315, 865–872 (1973).

    Article  Google Scholar 

  32. S. Barlow, L. M. Henling, M. W. Day, et al., Chem. Commun., 1567–1568 (1999).

  33. G. Orlandi, F. Zerbetto, and M. Z. Zgierski, Chem. Rev., 91, 867–891 (1991).

    Article  Google Scholar 

  34. S. Daehne and R. Radeglia, Wiss. Z. Techn. Univ. (Dresden), 29, 101–107 (1980).

    Google Scholar 

  35. S. Daehne, Z. Chem., 168–183 (1970).

  36. S. Daehne and R. Radeglia, Tetrahedron, 27, 3673–3693 (1971).

    Article  Google Scholar 

  37. S. Daehne and K.-D. Nolte, J. Chem. Soc., Chem. Communs., 1056–1067 (1972).

  38. S. Daehne, Science, 199, 1163–1167 (1978).

    Google Scholar 

  39. G. G. Dyadyusha and A. D. Kachkovskii, Ukr. Khim. Zh., 41, 1176–1181 (1975).

    Google Scholar 

  40. G. G. Dyadyusha and A. D. Kachkovskii, Teor. Eksp. Khim., 15, No.2, 152–161 (1979).

    Google Scholar 

  41. G. G. Dyadyusha and A. D. Kachkovskii, Usp. Fotogr. Nauk, 22, 55–66 (1984).

    Google Scholar 

  42. G. G. Dyadyusha and M. N. Ushomirskii, Teor. Eksp. Khim., 21, No.3, 268–279 (1985).

    Google Scholar 

  43. G. G. Dyadyusha and M. N. Ushomirskii, Teor. Eksp. Khim., 22, No.2, 137–145 (1986).

    Google Scholar 

  44. G. G. Dyadyusha, A. D. Kachkovskii, and M. L. Dekhtyar, J. Mol. Struct., 217, 195–205 (1990).

    Article  Google Scholar 

  45. A. D. Kachkovskii, G. G. Dyadyusha, and M. L. Dekhtyar, Dyes Pigments, 15, 191–202 (1991).

    Article  Google Scholar 

  46. M. L. Dekhtyar, Dyes Pigments, 28, 261–274 (1995).

    Article  Google Scholar 

  47. A. D. Kachkovskii, D. A. Yushchenko, and D. A. Kachkovskii, Teor. Eksp. Khim., 38, No.6, 341–346 (2002).

    Google Scholar 

  48. A. D. Kachkovskii, D. A. Yushchenko, G. A. Kachkovskii, et al., Dyes Pigments, 66, 211–221 (2005).

    Article  Google Scholar 

  49. H. Oeling and F. Baer, Org. Magn. Reson., 8, 623–627 (1976).

    Article  Google Scholar 

  50. W. Koenig, J. Prakt. Chem., 112, 1–36 (1925).

    Article  Google Scholar 

  51. R. S. Lepkowich, O. V. Przhonska, J. M. Hales, et al., Chem. Phys., 305, 259–270 (2004).

    Article  Google Scholar 

  52. A. D. Kachkovskii, A. I. Tolmachev, Yu. L. Slominskii, et al., Dyes Pigments, 64, 207–216 (2005).

    Article  Google Scholar 

  53. M. Matsuoka (ed.), Near-Infrared Absorbing Dyes, Plenum Press, New York (1990).

    Google Scholar 

  54. J. Fabian, H. Nakazumi, and M. Matsuoka, Chem. Rev., 92, 1197–1230 (1992).

    Article  Google Scholar 

  55. A. I. Tolmachev, Yu. L. Slominskii, and A. A. Ischchenko, Near-Infrared Dyes for High Technology Applications, S. Daehne, U. Resh-Genge, U. Wolfbeis (eds.), Kluwer Acad. Publ., Berlin (1998), pp. 384–515.

    Google Scholar 

  56. A. A. Ishchenko, Structure and Luminescence Spectral Characteristics of Polymethine Dyes [in Russian], Naukova Dumka, Kiev (1994).

    Google Scholar 

  57. V. A. Mostovnikov, A. N. Rubinov, and M. A. Al’perovich, Zh. Prikl. Spektrosk., 20, 42–47 (1974).

    Google Scholar 

  58. L. Martini and G. V. Hartland, Chem. Phys. Lett., 258, 180–186 (1996).

    Article  Google Scholar 

  59. T. Zhang, C. Chen, Qi Gong, et al., Chem. Phys. Lett., 298, 236–240 (1998).

    Article  Google Scholar 

  60. M. Garavelli, P. Celani, F. Bernardi, et al., J. Am. Chem. Soc., 119, 11487–11494 (1997).

    Article  Google Scholar 

  61. J. Quenneville, M. Ben-Nun, and T. J. Martinez, J. Photochem. Photobiol. A, 144, 229–235 (2001).

    Article  Google Scholar 

  62. A. Yartsev, J.-L. Alvarez, U. Aberg, et al., Chem. Phys. Lett., 243, 281–289 (1995).

    Article  Google Scholar 

  63. W. Wu, D. Danovich, A. Shurki, et al., J. Phys. Chem. A, 104, 8744–8758 (2000).

    Article  Google Scholar 

  64. P. Batail, Chem. Rev., 104, 4887–4890 (2004).

    Article  PubMed  Google Scholar 

  65. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett., 42, 1698–1701 (1979).

    Article  Google Scholar 

  66. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev., 22, 2099–2111 (1980).

    Article  Google Scholar 

  67. J. S. Craw, J. R. Reimers, G. B. Bacskay, et al., Chem. Phys., 167, 77–99 (1992).

    Article  Google Scholar 

  68. J. S. Craw, J. R. Reimers, G. B. Bacskay, et al., Chem. Phys., 167, 101–109 (1992).

    Article  Google Scholar 

  69. J. R. Reimers and N. S. Hush, Chem. Phys., 176, 407–420 (1993).

    Article  Google Scholar 

  70. J. R. Reimers, J. S. Craw, G. B. Bacskay, et al., Mol. Cryst. Liquid Cryst. A, 234, 51–55 (1993).

    Google Scholar 

  71. L. M. Tolbert and M. E. Ogle, J. Am. Chem. Soc., 112, 9519–9527 (1990).

    Article  Google Scholar 

  72. L. M. Tolbert and M. E. Ogle, Synth. Met., 51, 391–393 (1992).

    Article  Google Scholar 

  73. L. M. Tolbert and X. Zhao, J. Am. Chem. Soc., 119, 3253–3258 (1997).

    Article  Google Scholar 

  74. J. V. Caspar, V. Ramamurthy, and D. R. Corbin, J. Am. Chem. Soc., 113, 600–610 (1991).

    Article  Google Scholar 

  75. T. Bally, K. Rith, W. Tang, et al., J. Am. Chem. Soc., 114, 2440–2446 (1992).

    Article  Google Scholar 

  76. T. Giamarchi, Chem. Rev., 104, 5037–5055 (2004).

    Article  PubMed  Google Scholar 

  77. N. F. Mott, Metal-Insulator Transitions, Taylor and Francis, London (1990).

    Google Scholar 

  78. J. R. Reimers and N. S. Hush, Chem. Phys., 134, 323–354 (1989).

    Article  Google Scholar 

  79. J. R. Reimers and N. S. Hush, Chem. Phys., 146, 89–103 (1990).

    Article  Google Scholar 

  80. D. Comoreto, D. Moses, H. Okumoto, et al., Synth. Met., 84, 539–544 (1997).

    Article  Google Scholar 

  81. D. Moses, A. Dogarin, and A. J. Heeger, Synth. Met., 116, 19–22 (2001).

    Article  Google Scholar 

  82. H. Seo, C. Hotta, and K. Fukuyama, Chem. Rev., 104, 5005–5036 (2004).

    Article  PubMed  Google Scholar 

  83. G. K. Hutchison, M. A. Ratner, and T. J. Marks, J. Am. Chem. Soc., 127, 2339–2350 (2005).

    Article  PubMed  Google Scholar 

  84. I. A. Misurkin and A. A. Ovchinnikov, Usp. Khim., 46, 1835–1870 (1977).

    Google Scholar 

  85. A. Streitwieser, Molecular Orbital Theory for Organic Chemists, Wiley, New York (1961).

    Google Scholar 

  86. A. V. Luzanov, Teor. Eksp. Khim., 27, No.4, 413–426 (1991).

    Google Scholar 

  87. R. Carbo and J. M. Riera, A General SCF Theory, Lecture Notes in Chemistry, Springer, Berlin (1998).

    Google Scholar 

  88. M. J. S. Dewar, Molecular Orbital Theory for Organic Chemists, McGraw-Hill, New York (1969).

    Google Scholar 

  89. H. Kuhn, J. Chem. Phys., 16, 840–841 (1948).

    Article  Google Scholar 

  90. H. Kuhn, J. Chem. Phys., 17, 1098–1212 (1949).

    Article  Google Scholar 

  91. H. Kuhn, W. Hyber, G. Handschig, et al., J. Chem. Phys., 32, 467–470 (1960).

    Article  Google Scholar 

  92. C. Kuhn and H. Kuhn, Synth. Met., 68, 173–181 (1995).

    Article  Google Scholar 

  93. N. S. Bayliss, J. Chem. Phys., 16, 287–292 (1948).

    Article  Google Scholar 

  94. S. Basu, J. Chem. Phys., 22, 1270–1271 (1954).

    Article  Google Scholar 

  95. W. T. Simpson, J. Am. Chem. Soc., 73, 5359–5363 (1951).

    Article  Google Scholar 

  96. K. Ruedenberg, J. Chem. Phys., 21, 1565–1581 (1953).

    Article  Google Scholar 

  97. S. Olszewski, J. Chem. Phys., 44, 3297–3306 (1966).

    Article  Google Scholar 

  98. O. D. Kachkovskii, D. A. Yushchenko, G. O. Kachkovskii, et al., Dyes Pigments, 66, 223–229 (2005).

    Article  Google Scholar 

  99. J. Fabian and H. Hartmann, J. Signal AM, 2, 457–460 (1974).

    Google Scholar 

  100. N. Tyutyulkov, J. Petkov, O. Polansky, et al., Theor. Chim. Acta, 38, 1–8 (1975).

    Article  Google Scholar 

  101. J. Fabian, H. Hartmann, and N. Tyutyulkov, J. Signal AM, 4, 101–114 (1976).

    Google Scholar 

  102. H. Hartmann, J. Signal AM, 7, 101–118 (1976).

    Google Scholar 

  103. C. A. Coulson and G. S. Rashbrooke, Proc. Cambridge Phil. Soc., 36, 193–200 (1940).

    Google Scholar 

  104. H. C. Longuet-Higgins, J. Chem. Phys., 18, 265–287 (1950).

    Article  Google Scholar 

  105. C. A. Coulson and H. C. Longuet-Higgins, Proc. Roy. Soc. London, 191, 39–47 (1947).

    Google Scholar 

  106. N. Trinaismich, Semiempirical Methods for Calculation of Electronic Structure [Russian translation], J. Sigal (ed.), Vol. 1, Mir, Moscow (1980), pp. 13–46.

    Google Scholar 

  107. W. Grahn, Tetrahedron, 32, 1931–1939 (1976).

    Article  Google Scholar 

  108. P. M. Henrichs and S. Gross, J. Am. Chem. Soc., 98, 7169–7175 (1976).

    Article  Google Scholar 

  109. M. Wahnert, S. Daehne, and R. Radeglia, Adv. Mol. Relax Interact. Process, 11, 263–282 (1977).

    Article  Google Scholar 

  110. J. Schaefer and E. O. Steiskal, J. Am. Chem. Soc., 98, 1031–1032 (1976).

    Article  Google Scholar 

  111. M. M. Maricq, J. S. Waugh, A. G. MacDiarmid, et al., J. Am. Chem. Soc., 100, 7729–7730 (1978).

    Article  Google Scholar 

  112. K. Knoll, S. A. Krouse, and R. R. Schrock, J. Am. Chem. Soc., 110, 4424–4425 (1988).

    Article  Google Scholar 

  113. F. Garnier, A. Yassar, R. Hajlaoui, et al., J. Am. Chem. Soc., 115, 8716–8720 (1993).

    Article  Google Scholar 

  114. D. M. Adams, J. Kerito, E. J. C. Olson, et al., J. Am. Chem. Soc., 119, 10608–10619 (1997).

    Article  Google Scholar 

  115. X.-C. Li, H. Sirringhaus, F. Garnier, et al., J. Am. Chem. Soc., 120, 2206–2207 (1998).

    Article  Google Scholar 

  116. S. Tretiak, V. Chernyak, and S. Mukamel, J. Am. Chem. Soc., 119, 11408–11419 (1997).

    Article  Google Scholar 

  117. V. H. F. Bunz, Chem. Rev., 100, 1605–1644 (2000).

    Article  PubMed  Google Scholar 

  118. J. A. Levitsky, J. Kim, and T. M. Swager, J. Am. Chem. Soc., 121, 1466–1472 (1999).

    Article  Google Scholar 

  119. G. Pourtois, D. Beljonne, J. Cornil, et al., J. Am. Chem. Soc., 124, 4436–4447 (2002).

    Article  PubMed  Google Scholar 

  120. E. Neuteboom, S. C. J. Meskers, P. A. Hal, et al., J. Am. Chem. Soc., 125, 8625–8638 (2003).

    Article  PubMed  Google Scholar 

  121. M. Heeney, C. Bailey, K. Genericius, et al., J. Am. Chem. Soc., 127, 1078–1079 (2005).

    Article  PubMed  Google Scholar 

  122. M.-H. Yoon, S. A. DiBenedetto, A. Facchetti, et al., J. Am. Chem. Soc., 127, 1348–1349 (2005).

    Article  PubMed  Google Scholar 

  123. D. A. Scherlis and N. Marzarl, J. Am. Chem. Soc., 127, 3207–3212 (2005).

    Article  PubMed  Google Scholar 

  124. G. G. Dyadyusha, I. V. Repyakh, and A. D. Kachkovskii, Teor. Eksp. Khim., 20, No.4, 398–406 (1984).

    Google Scholar 

  125. G. G. Dyadyusha, I. V. Repyakh, and A. D. Kachkovskii, Teor. Eksp. Khim., 22, No.3, 347–351 (1986).

    Google Scholar 

  126. A. I. Kiprianov, S. G. Fridman, L. S. Pupko, and A. I. Kiprianov, Color and Structure of Cyanine Dyes [in Russian], Naukova Dumka, Kiev (1979), pp. 501–521.

    Google Scholar 

  127. G. G. Dyadyusha, I. V. Repyakh, and A. D. Kachkovskii, Teor. Eksp. Khim., 21, No.2, 138–146 (1985).

    Google Scholar 

  128. A. D. Kachkovskii and M. L. Dekhtyar’, Teor. Eksp. Khim., 28, 313–319 (1992).

    Google Scholar 

  129. A. D. Kachkovskii and M. L. Dekhtyar, Dyes Pigments, 30, 43–54 (1996).

    Article  Google Scholar 

  130. A. D. Kachkovskii and O. A. Zhukova, Teor. Eksp. Khim., 37, No.5, 280–284 (2001).

    Google Scholar 

  131. M. P. Shandura, Ye. M. Poronic, and Yu. P. Kovtun, Dyes Pigments, 66, 171–177 (2005).

    Article  Google Scholar 

  132. L. Zuppiroli, A. Bieber, D. Michoud, et al., Chem. Phys. Lett., 374, 7–12 (2003).

    Article  Google Scholar 

  133. V. M. Geskin, J. Cornil, and J.-L. Bredas, Phys. Lett., 403, 228–231 (2005).

    Google Scholar 

  134. Yu. N. Bernatskaya and A. D. Kachkovskii, Teor. Eksp. Khim., 35, No.3, 150–154 (1999).

    Google Scholar 

  135. A. D. Kachkovskii, Structure and Color of Polymethine Dyes [in Russian], Naukova Dumka, Kiev (1989).

    Google Scholar 

  136. G. G. Dyadyusha and I. V. Repyakh, Teor. Eksp. Khim., 24, No.2, 129–138 (1988).

    Google Scholar 

  137. J. Fabian and A. Melhorn, J. Mol. Struct. Theochem., 109, 17–26 (1984).

    Article  Google Scholar 

  138. V. Buss, M. Schreder, and M. P. Fuelscher, Angew. Chem. Int. Ed., 40, 3189–3190 (2001).

    Article  Google Scholar 

  139. A. A. Ishchenko, N. A. Derevyanko, V. M. Zubarovskii, et al., Teor. Eksp. Khim., 20, No.4, 443–451 (1984).

    Google Scholar 

  140. A. A. Ishchenko, Zh. Prikl. Spektrosk., 55, 717–724 (1991).

    Google Scholar 

  141. A. A. Ishchenko, Quantum Electronics, 24, 471–492 (1994).

    Article  Google Scholar 

  142. V. G. Plotnikov, Usp. Khim., 49, 327–361 (1980).

    Google Scholar 

  143. E. F. McCoy and I. J. Ross, Aust. J. Chem., 15, 573–590 (1962).

    Google Scholar 

  144. V. P. Klochkov, Optika Spektroskopiya, 19, 337–344 (1965).

    Google Scholar 

  145. V. I. Permogorov, L. A. Serdyukova, and M. D. Frank-Kamenetskii, Optika Spektroskopiya, 22, 979–981 (1967).

    Google Scholar 

  146. B. Genri and M. Kasha, Usp, Fiz. Nauk, 108, 113–141 (1982).

    Google Scholar 

  147. M. M. Awad, P. K. McCarthy, and D. Blanchard, J. Phys. Chem., 98, 1454–1458 (1994).

    Article  Google Scholar 

  148. K. Schoffel, F. Dietz, and T. Krosser, Chem. Phys. Lett., 172, 187–192 (1990).

    Article  Google Scholar 

  149. F. Momicchioli, L. Baraldi, and G. Berthier, Chem. Phys., 123, 103–112 (1988).

    Article  Google Scholar 

  150. G. Ponterini and F. Momicchioli, Chem. Phys., 151, 111–126 (1991).

    Article  Google Scholar 

  151. I. Baraldi, A. Carnevali, F. Momicchioli, et al., Spectrosc. Acta. A, 49, 471–495 (1993).

    Article  Google Scholar 

  152. E. N. Kalitievskaya, T. K. Razumova, and G. M. Rubanova, Optika Spektroskopiya, 60, 272–275 (1986).

    Google Scholar 

  153. D. I. Berezin, G. P. Gurinovich, and F. Enikhen, Zh. Prikl. Spektrosk., 51, 932–938 (1989).

    Google Scholar 

  154. Yu. L. Lifanov, V. A. Kuz’min, A. V. Karyakin, et al., Izv. Akad. Nauk. SSSR, Ser. Khim., 787–790 (1973).

  155. F. Dietz and S. K. Rentsch, Chem. Phys., 96, 145–151 (1985).

    Article  Google Scholar 

  156. U. Mazzucato and F. Momicchioli, Chem. Rev., 91, 1679–1719 (1991).

    Article  Google Scholar 

  157. B. E. Kohler, Chem. Rev., 93, 41–54 (1993).

    Article  Google Scholar 

  158. A. F. Marks, A. K. Noah, and M. R. V. Sahyun, J. Photochem. Photobiol. A, 139, 143–149 (2001).

    Article  Google Scholar 

  159. M. I. Demchuk, A. A. Ischchenko, Zh. A. Krasnaya, et al., Chem. Phys. Lett., 167, 774–780 (1990).

    Article  Google Scholar 

  160. O. Przhonska, Yu. Slominskii, U. Stahl, et al., J. Luminescence, 69, 105–113 (1996).

    Article  Google Scholar 

  161. P. Cronstrand, O. Christian, P. Norman, et al., Phys. Chem. Chem. Phys., 2, 5357–5363 (2000).

    Article  Google Scholar 

  162. Y. H. Meyer, M. Pittman, and P. Plaza, J. Photochem. Photobiol. A, 114, 1–21 (1998).

    Article  Google Scholar 

  163. R. Negres, O. Przhonska, D. Hagan, et al., IEEE J. on Selected Topics in Quantum Electronics, 849–863 (2001).

  164. R. S. Lepkowicz, O. Przhonska, J. M. Hales, et al., Chem. Phys., 286, 277–291 (2003).

    Article  Google Scholar 

  165. O. V. Przhonska, D. J. Hagan, E. Novikov, et al., Chem. Phys., 273, 235–248 (2001).

    Article  Google Scholar 

  166. A. Mishra, R. K. Behera, P. K. Behera, et al., Chem. Rev., 100, 1973–2011 (2000).

    Article  PubMed  Google Scholar 

  167. A. D. Kachkovskii, M. Yu. Kornilov, and D. N. Shut’, Teor. Eksp. Khim., 40, No.2, 83–87 (2004).

    Google Scholar 

  168. Yu. P. Piryatinskii, V. G. Nazarenko, R. M. Vasyuta, et al., Teor. Eksp. Khim., 39, No.4, 225–229 (2003).

    Google Scholar 

  169. A. D. Kachkovskii and O. A. Zhukova, Teor. Eksp. Khim., 36, No.3, 162–168 (2000).

    Google Scholar 

  170. A. D. Kachkovski and O. O. Zhukova, Dyes Pigments, 63, 323–332 (2004).

    Article  Google Scholar 

  171. A. D. Kachkovski, Dyes Pigments, 24, 171–183 (1994).

    Article  Google Scholar 

  172. D. G. Krotko, K. V. Fedotov, A. D. Kachkovski, et al., Dyes Pigments, 64, 79–84 (2005).

    Article  Google Scholar 

  173. Z. R. Grabowski, K. Rotkiewicz, and W. Rettig, Chem. Rev., 103, 3899–4031 (2003).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teoreticheskaya i Eksperimental’naya Khimiya, Vol. 41, No. 3, pp. 133–155, May–June, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kachkovskii, A.D. The Solitonic Nature of the Electronic Structure of the Ions of Linear Conjugated Systems. Theor Exp Chem 41, 139–164 (2005). https://doi.org/10.1007/s11237-005-0034-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-005-0034-8

Key words

Navigation