Skip to main content
Log in

Evaluation of adhesion properties of lactobacilli probiotic candidates

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Bacterial adhesion is a complex phenomenon implicated in the host-bacterial interaction that is pivotal for probiotic activity. Eight probiotic lactobacilli candidates (Lactobacillus reuteri, L. plantarum, L. mucosae, L. murinus) were screened for their ability to adhere to abiotic and biotic surfaces in vitro. Adhesion to hydrocarbons was used for hydrophobicity assessment. Three strains of L. reuteri and L. murinus C were evaluated as hydrophobic, others as intermediate. All tested strains were able to form the biofilm on polystyrene. L. mucosae D and L. reuteri E were tested for adhesion to epithelial cell lines (HeLa and Caco-2). Both were more adherent to HeLa than to Caco-2. The adhesivity degree in HeLa reached the highest value after 8 h of co-cultivation in both lactobacilli tested, then decreased. In Caco-2, adhesion was increased within 24 h from the beginning of the co-cultivation. Mucus-binding protein gene, implicated in adhesion, was detected in L. mucosae D. Therefore, the involvement of proteinaceous substances in binding process was investigated. Cells of L. mucosae D were digested by three proteolytic enzymes (proteinase K, pronase E, trypsin) and evaluated for time-dependent adhesivity changes to HeLa, Caco-2, and L929 cell lines. Results confirmed that proteins are most likely to play an important role in binding of lactobacilli to eukaryotic cells. One hour after treatment, L. mucosae D was able to overcome the effect of proteolytic cleavage. We assume that it was due to the restoration of its cell-surface binding structures. Co-cultivation of HeLa and L. mucosae D led to protuberance and communication channels formation in eukaryotic cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Song M, Yun B, Moon JH, Park DJ, Lim K, Oh S (2015) Korean J Food Sci An 35:551

    Article  Google Scholar 

  2. Lahtinen S, Ouwehand A (2009) Mechanisms of probiotics. In: Lee YK, Salminen S (eds) Handbook of probiotics and prebiotics, 1st edn. Wiley, Hoboken, p 377

    Google Scholar 

  3. Sengupta R, Altermann E, Anderson RC, McNabb WC, Moughan PJ, Roy NC (2013) Med Inflamm 2013:237921

    Article  Google Scholar 

  4. Roos S, Jonsson H (2002) Microbiology 148:433

    Article  CAS  Google Scholar 

  5. Jones SE, Versalovic J (2009) BMC Microbiol 9:39

    Article  Google Scholar 

  6. Priha O, Virkajärvi V, Juvonen R, Puupponen-Pimiä R, Nohynek L, Alakurtti S, Pirttimaa M, Storgards E (2014) Curr Microbiol 69:617

    Article  CAS  Google Scholar 

  7. Wang Y, Yi L, Zhang Zh, Fan H, Cheng X, Lu Ch (2014) Curr Microbiol 68:575

    Article  CAS  Google Scholar 

  8. Vendeville A, Winzer K, Heulier K, Tang CM, Hardie KR (2005) Nat Rev Microbiol 3:383

    Article  CAS  Google Scholar 

  9. Oh PL, Benson AK, Peterson DA, Patil PB, Moriyama EN, Roos S, Walter J (2010) ISME J 4:377

    Article  Google Scholar 

  10. Frese SA, Benson AK, Tannock GW, Loach DM, Kim J, Zhang M, Oh PL, Heng NCK, Patil PB, Juge N, MacKenzie DA, Peterson DA, Lapidus A, Dalin E, Tice H, Goltsman E, Land M, Hauser L, Ivanova N, Kyrpides NC, Benson AK, Walter J (2011) PLoS Genet 7:e1001213

    Article  Google Scholar 

  11. Bujňáková D, Kmeť V (2012) Folia Microbiol 57:263

    Article  Google Scholar 

  12. Schillinger U, Guigas C, Holzapfel WH (2005) Int Dairy J 15:1289

    Article  CAS  Google Scholar 

  13. Vinderola G, Capellini B, Villarreal F, Suárez V, Quiberoni A, Reinheimer J (2008) Food Sci Technol 41:1678

    CAS  Google Scholar 

  14. Kiely LJ, Olson NF (2000) Food Microbiol 17:277

    Article  CAS  Google Scholar 

  15. Botes M, Loos B, van Reenen CA, Dicks LMT (2008) Arch Microbiol 190:573

    Article  CAS  Google Scholar 

  16. Bilková A, Kiňová Sepová H, Bukovský M, Bezáková L (2011) Vet Med 56:319

    Article  Google Scholar 

  17. Kiňová Sepová H, Dubničková M, Bilková A, Bukovský M, Bezáková L (2011) Braz J Microbiol 42:1188

    Article  Google Scholar 

  18. Bilková A, Dubničková M, Kiňová Sepová H (2013) Acta Fac Pharm Univ Comen 60:1

    Google Scholar 

  19. Májeková H, Kiňová Sepová H, Bilková A, Čisárová B (2015) Folia Microbiol 60:253

    Article  Google Scholar 

  20. Potočnjak M, Pusić P, Frece J, Abram M, Janković Gobin I (2017) Food Technol Biotechnol 55:48

    Google Scholar 

  21. Roos S, Karner F, Axelsson L, Jonsson H (2000) Int J Syst Evol Microbiol 50:251

    Article  CAS  Google Scholar 

  22. Theerakittayakorn K, Bunprasert T (2011) Proc World Acad Sci Eng Technol 50:373

    Google Scholar 

  23. Lorca G, Torino MI, de Valdez GF, Ljungh Å (2002) FEMS Microbiol Lett 206:31

    Article  CAS  Google Scholar 

  24. Štyriak I, Strompfová V, Štyriaková I, Simonová M, Lauková A (2010) Afr J Microbiol Res 4:2265

    Google Scholar 

  25. Muñoz-Provencio D, Monedero V (2011) J Microbiol Biotechnol 21:197

    Article  Google Scholar 

  26. Yadav AK, Tyagi A, Kumar A, Saklani AC, Grover S, Batish VK (2015) Arch Microbiol 197:155

    Article  CAS  Google Scholar 

  27. Bilková A, Kiňová Sepová H, Bilka F, Bukovský M, Balažová A, Bezáková L (2008) Acta Fac Pharm Univ Comen 55:S64

    Google Scholar 

  28. Kiňová Sepová H, Bilková A (2013) Folia Microbiol 58:33

    Article  Google Scholar 

  29. Vinderola CG, Reinheimer JA (2003) Food Res Int 36:895

    Article  CAS  Google Scholar 

  30. Thapa N, Pal J, Tamag JP (2004) World J Microbiol Biotechnol 20:599

    Article  CAS  Google Scholar 

  31. MacKenzie DA, Jeffers F, Parker LM, Vibert-Vallet A, Bongaerts RJ, Roos S, Walter J, Juge N (2010) Microbiology 156:3368

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Laboratory of Scanning Electron Microscopy in České Budějovice for processing of specimens and assistance with electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hana Kiňová Sepová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiňová Sepová, H., Florová, B., Bilková, A. et al. Evaluation of adhesion properties of lactobacilli probiotic candidates. Monatsh Chem 149, 893–899 (2018). https://doi.org/10.1007/s00706-017-2135-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-017-2135-1

Keywords

Navigation