Skip to main content
Log in

Synthesis of biodiesel catalyst CaO·ZnO by thermal decomposition of calcium hydroxyzincate dihydrate CaZn2(OH)6·2H2O: kinetic studies and mechanisms

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this contribution, we are presenting the study of structural and thermal decomposition kinetics of synthesized calcium hydroxyzincate dihydrate CaZn2(OH)6·2H2O (CZO). The characterization of the prepared and calcined precursors was done by X-ray diffraction and Fourier Transform Infrared techniques and indicates that CZO exhibits a monoclinic structure with space group P2 1 /c. Calcining this material at 200 °C leads to a heterogeneous mixture composed of ZnO, Ca(OH)2, and an amorphous Zn(OH)2. When the temperature is >400 °C, only ZnO and CaO phases were detected by XRD analysis. The thermal decomposition kinetics of CZO was evaluated by thermogravimetry and derivative thermogravimetry in N2 atmosphere under non-isothermal conditions. The kinetic parameters such as the activation energy (E α ) and reaction model (f(α)) revealed the complex nature of the decomposition process, consisting of several steps. The separation of overlapped peaks was performed by applying the Fraser–Suzuki procedure to the experimental DTG data and the activation energy was then calculated for each individual peak by Friedman method confirming the fair single-step mechanism of the first three processes. On the basis of kinetic results, a thermal decomposition mechanism of CZO material has been proposed and correlated to structural nature and stability of the resulting phases. The CaO∙ZnO based catalyst is formed according to a limited nucleation and growth mechanism at low temperatures and three complex processes occur afterwards when the structure cleaves.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gagnon EG, Wang YM (1987) J Electrochem Soc 134:2091

    Article  CAS  Google Scholar 

  2. Zhu XM, Yang HX, Ai XP, Yu JX, Cao YL (2003) J Appl Electrochem 33:607

    Article  CAS  Google Scholar 

  3. Yang CC, Chen P (2008) ECS Trans 13:1

    Article  Google Scholar 

  4. Arliguie G, Grandet J (1990) Cem Concr Res 20:517

    Article  CAS  Google Scholar 

  5. Tittarelli F, Bellezze T (2010) Corros Sci 52:978

    Article  CAS  Google Scholar 

  6. Gómez-Ortíz NM, González-Gómez WS, De la Rosa-García SC, Oskam G, Quintana P, Soria-Castro M, Gómez-Cornelio S, Ortega-Morales BO (2014) Int Biodeterior Biodegrad 91:1

    Article  Google Scholar 

  7. Madhusudhana N, Yogendra K, Mahadevan KM, Naik S (2011) Int J Chem Eng Appl 2:294

    CAS  Google Scholar 

  8. Xavier CS, Sczancoski JC, Cavalcante LS, Paiva-Santos CO, Varela JA, Longo E, Li MS (2009) Solid State Sci 11:2173

    Article  CAS  Google Scholar 

  9. Kesić Ž, Lukić I, Brkić D, Rogan J, Zdujić M, Liu H, Skala D (2012) Appl Catal A Gen 427–428:58

    Google Scholar 

  10. Alba-Rubio AC, Santamaría-González J, Mérida-Robles JM, Moreno-Tost R, Martín-Alonso D, Jiménez-López A, Maireles-Torres P (2010) Catal Today 149:281

    Article  CAS  Google Scholar 

  11. Lin T, Mollah MYA, Vempati RK, Cocke DL (1995) Chem Mater 7:1974

    Article  CAS  Google Scholar 

  12. Sbirrazzuoli N, Vincent L, Bouillard J, Elégant L (1999) J Therm Anal Calorim 56:783

    Article  CAS  Google Scholar 

  13. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) Thermochim Acta 520:1

    Article  CAS  Google Scholar 

  14. Brown ME, Gallagher PK (2008) Handbook of thermal analysis and calorimetry: recent advances, techniques and applications, 1st edn. Elsevier BV, Amsterdam

    Google Scholar 

  15. Friedman HL (1964) J Polym Sci Part C Polym Symp 6:183

    Article  Google Scholar 

  16. Málek J (1992) Thermochim Acta 200:257

    Article  Google Scholar 

  17. Arshad MA, Maaroufi AK (2014) Thermochim Acta 585:25

    Article  CAS  Google Scholar 

  18. Carr RW (2007) Modeling chemical reactions. Elsevier BV, Amsterdam

    Google Scholar 

  19. Stahl R, Jacobs H (1997) Z Anorg Allg Chem 623:1287

    Article  CAS  Google Scholar 

  20. Ding S, Wang M (2008) Dyes Pigm 76:94

    Article  Google Scholar 

  21. Zhou H, Alves H, Hofmann DM, Kriegseis W, Meyer BK, Kaczmarczyk G, Hoffmann A (2002) Appl Phys Lett 80:210

    Article  CAS  Google Scholar 

  22. Rubio-Caballero JM, Santamaría-González J, Mérida-Robles J, Moreno-Tost R, Jiménez-López A, Maireles-Torres P (2009) Appl Catal B Environ 91:339

    Article  CAS  Google Scholar 

  23. Khachani M, El Hamidi A, Halim M, Arsalane S (2014) J Mater Environ Sci 5:615

    CAS  Google Scholar 

  24. Schaube F, Koch L, Wörner A, Müller-Steinhagen H (2012) Thermochim Acta 538:9

    Article  CAS  Google Scholar 

  25. Galwey AK (2000) Thermochim Acta 355:181

    Article  CAS  Google Scholar 

  26. Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA (2011) J Phys Chem B 115:1780

    Article  Google Scholar 

  27. Svoboda R, Málek J (2012) J Therm Anal Calorim 111:1045

    Article  Google Scholar 

  28. Yan QL, Zeman S, Elbeih A (2012) Thermochim Acta 537:1

    Article  CAS  Google Scholar 

  29. Tan G, Wang Q, Zheng H, Zhao W, Zhang S, Liu Z (2011) J Phys Chem A 115:5517

    Article  CAS  Google Scholar 

  30. Vyazovkin S (2000) New J Chem 24:913

    Article  CAS  Google Scholar 

  31. Opfermann J (2000) J Therm Anal Calorim 60:641

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by University of Mohammed V- Morocco under the Project No. SCH 04/09 and Hassan II Academy of Science and Technology, Morocco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnane El Hamidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouanji, F., Khachani, M., Arsalane, S. et al. Synthesis of biodiesel catalyst CaO·ZnO by thermal decomposition of calcium hydroxyzincate dihydrate CaZn2(OH)6·2H2O: kinetic studies and mechanisms. Monatsh Chem 147, 1693–1702 (2016). https://doi.org/10.1007/s00706-016-1671-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-016-1671-4

Keywords

Navigation