Skip to main content
Log in

Synthesis Method Effect on the Catalytic Performance of Acid–Base Bifunctional Catalysts for Converting Low-Quality Waste Cooking Oil to Biodiesel

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Synthesis method effect on surface properties of doped V2O5 metal oxide into CaO-based catalysts as acid–base bifunctional catalysts have been studied. Various acid–base bifunctional catalysts were synthesized via co-precipitation, impregnation, and physical mixing methods. X-ray diffraction (XRD), Fourier Transform Infra-Red (FT-IR) and X-ray fluorescence (XRF) analyses of all prepared samples confirmed that V2O5 was well dispersed on the surface of CaO catalysts. V2O5-CaO catalyst synthesized via the co-precipitation method exhibited the highest FAME yield (78.48%) under mild reaction conditions with waste cooking oil among other synthesized catalysts. This superiority is attributed to its highest total acid–base sites per catalyst surface area and mesoporous structure. The simultaneous esterification-transesterification activity was greatly affected by catalyst surface properties (i.e., the strength of acidity and basicity), the total amount of acid–base sites, and surface area. These results were supported by the N2-adsorption, Temperature Programmed Desorption (TPD)-CO2, and TPD-NH3 data. Thus, our work showed that co-precipitation was the most promising preparation method for maximizing the total acid–base sites per catalyst surface area and acid–base strength of the catalyst. The remarkable strength of the acid–base and total amount of acid–base sites of the V2O5-CaO catalyst is caused by the synergistic effect of the dual acid sites (Brønsted and Lewis) and base sites on the catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Buchori L, Widayat W, Muraza O, Amali Muhamad Iqbal, Wulan MR, Prameswari J (2020) Effect of temperature and concentration of zeolite catalysts from geothermal solid waste in biodiesel production from used cooking oil by esterification–transesterification process. Processes 8:1629. https://doi.org/10.3390/pr8121629

  2. Borah MJ, Das A, Das V, Bhuyan N, Deka D (2019) Transesterification of waste cooking oil for biodiesel production catalyzed by Zn substituted waste egg shell derived CaO nanocatalyst. Fuel 242:345–354. https://doi.org/10.1016/j.fuel.2019.01.060

    Article  CAS  Google Scholar 

  3. Syazwani ON, Rashid U, Mastuli MS, Taufiq-Yap YH (2019) Esterification of palm fatty acid distillate (PFAD) to biodiesel using Bi-functional catalyst synthesized from waste angel wing shell (Cyrtopleura costata). Renew Energy 131:187–196. https://doi.org/10.1016/j.renene.2018.07.031

    Article  CAS  Google Scholar 

  4. Gebremariam SN, Marchetti JM (2018) Techno-economic feasibility of producing biodiesel from acidic oil using sulfuric acid and calcium oxide as catalysts. Energy Convers Manag 171:1712–1720. https://doi.org/10.1016/j.enconman.2018.06.105

    Article  CAS  Google Scholar 

  5. Istadi I, Prasetyo SA, Nugroho TS (2015) Characterization of K2O/CaO-ZnO catalyst for transesterification of soybean oil to biodiesel. Procedia Environ Sci 23:394–399. https://doi.org/10.1016/j.proenv.2015.01.056

    Article  CAS  Google Scholar 

  6. Yin P, Chen W, Liu W, Chen H, Qu R, Liu X et al (2013) Efficient bifunctional catalyst lipase/organophosphonic acid-functionalized silica for biodiesel synthesis by esterification of oleic acid with ethanol. Bioresour Technol 140:146–151. https://doi.org/10.1016/j.biortech.2013.04.082

    Article  CAS  PubMed  Google Scholar 

  7. Catarino M, Martins S, Soares Dias AP, Costa Pereira MF, Gomes J (2019) Calcium diglyceroxide as a catalyst for biodiesel production. J Environ Chem Eng 7:103099. https://doi.org/10.1016/j.jece.2019.103099

    Article  CAS  Google Scholar 

  8. Asikin-Mijan N, Taufiq-Yap YH, Lee HV (2015) Synthesis of clamshell derived Ca(OH)2 nano-particles via simple surfactant-hydration treatment. Chem Eng J 262:1043–1051. https://doi.org/10.1016/j.cej.2014.10.069

    Article  CAS  Google Scholar 

  9. Ramli A, Farooq M (2015) Optimization of process parameters for the production of biodiesel from waste cooking oil in the presence of bifunctional γ-Al2O3-CeO2 supported catalysts. Malaysian J Anal Sci 19:8–19

    Google Scholar 

  10. Seffati K, Honarvar B, Esmaeili H, Esfandiari N (2019) Enhanced biodiesel production from chicken fat using CaO/CuFe2O4 nanocatalyst and its combination with diesel to improve fuel properties. Fuel 235:1238–1244. https://doi.org/10.1016/j.fuel.2018.08.118

    Article  CAS  Google Scholar 

  11. Gardy J, Nourafkan E, Osatiashtiani A, Lee AF, Wilson K, Hassanpour A et al (2019) A core-shell SO4/Mg-Al-Fe3O4 catalyst for biodiesel production. Appl Catal B Environ 259:118093. https://doi.org/10.1016/j.apcatb.2019.118093

    Article  CAS  Google Scholar 

  12. Gardy J, Rehan M, Hassanpour A, Lai X, Nizami A (2019) Advances in nano-catalysts based biodiesel production from non-food feedstocks. J Environ Manage 249:109316. https://doi.org/10.1016/j.jenvman.2019.109316

    Article  CAS  PubMed  Google Scholar 

  13. Mahmood Khan H, Iqbal T, Haider Ali C, Javaid A, Iqbal CI (2020) Sustainable biodiesel production from waste cooking oil utilizing waste ostrich (Struthio camelus) bones derived heterogeneous catalyst. Fuel 277:118091. https://doi.org/10.1016/j.fuel.2020.118091

    Article  CAS  Google Scholar 

  14. Mardhiah HH, Ong HC, Masjuki HH, Lim S, Lee HV (2017) A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renew Sustain Energy Rev 67:1225–1236. https://doi.org/10.1016/j.rser.2016.09.036

    Article  CAS  Google Scholar 

  15. Suryajaya SK, Mulyono YR, Santoso SP, Yuliana M, Kurniawan A, Ayucitra A et al (2021) Iron (II) impregnated double-shelled hollow mesoporous silica as acid-base bifunctional catalyst for the conversion of low-quality oil to methyl esters. Renew Energy 169:1166–1174. https://doi.org/10.1016/j.renene.2021.01.107

    Article  CAS  Google Scholar 

  16. Ma F, Hanna MA (1999) Biodiesel production: a review1. Bioresour Technol 70:1–15. https://doi.org/10.1016/s0960-8524(99)00025-5

    Article  CAS  Google Scholar 

  17. Wang Y-T, Fang Z, Yang X-X, Yang Y-T, Luo J, Xu K et al (2018) One-step production of biodiesel from Jatropha oils with high acid value at low temperature by magnetic acid-base amphoteric nanoparticles. Chem Eng J 348:929–939. https://doi.org/10.1016/j.cej.2018.05.039

    Article  CAS  Google Scholar 

  18. Wang Y-T, Fang Z, Yang XX (2017) Biodiesel production from high acid value oils with a highly active and stable bifunctional magnetic acid. Appl Energy 204:702–714. https://doi.org/10.1016/j.apenergy.2017.07.060

    Article  ADS  CAS  Google Scholar 

  19. Dai YM, Li YY, Jia-Hao-Lin, Chen BY, Chen CC (2021) One-pot synthesis of acid-base bifunctional catalysts for biodiesel production. J Environ Manage 299:113592. https://doi.org/10.1016/j.jenvman.2021.113592

  20. Widiarti N, Bahruji H, Holilah H, Ni’mah YL, Ediati R, Santoso E et al (2021) Upgrading catalytic activity of NiO/CaO/MgO from natural limestone as catalysts for transesterification of coconut oil to biodiesel. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01373-5

  21. Macario A, Giordano G, Onida B, Cocina D, Tagarelli A, Giuffrè AM (2010) Biodiesel production process by homogeneous/heterogeneous catalytic system using an acid-base catalyst. Appl Catal A Gen 378:160–168. https://doi.org/10.1016/j.apcata.2010.02.016

    Article  CAS  Google Scholar 

  22. Ezzah-Mahmudah S, Lokman IM, Saiman MI, Taufiq-Yap YH (2016) Synthesis and characterization of Fe2O3/CaO derived from Anadara Granosa for methyl ester production. Energy Convers Manag 126:124–131. https://doi.org/10.1016/j.enconman.2016.07.072

    Article  CAS  Google Scholar 

  23. Lee HV, Juan JC, Taufiq-Ya YH (2015) Preparation and application of binary acid-base CaO-La2O3 catalyst for biodiesel production. Renew Energy 74:124–32. https://doi.org/10.1016/j.renene.2014.07.017

  24. Krishnamurthy KN, Sridhara SN, Ananda Kumar CS (2020) Optimization and kinetic study of biodiesel production from Hydnocarpus wightiana oil and dairy waste scum using snail shell CaO nano catalyst. Renew Energy 146:280–296. https://doi.org/10.1016/j.renene.2019.06.161

    Article  CAS  Google Scholar 

  25. Kung HH (1989) Transition metal oxides – surface chemistry and catalysis, vol 45. Elsevier B.V, Amsterdam/Oxford/New York/Tokyo. https://doi.org/10.1016/S0167-2991(08)60921-0

  26. Yadav GD, Nair JJ (1999) Sulfated zirconia and its modified versions as promising catalysts for industrial processes. Microporous Mesoporous Mater 33:1–48. https://doi.org/10.1016/S1387-1811(99)00147-X

    Article  CAS  Google Scholar 

  27. Kalita P, Gupta NM, Kumar R (2011) Solvent-free Mukaiyama-aldol condensation catalyzed by Ce-Al-MCM-41 mesoporous materials. Microporous Mesoporous Mater 144:82–90. https://doi.org/10.1016/j.micromeso.2011.03.027

    Article  CAS  Google Scholar 

  28. Jeon Y, Chi WS, Hwang J, Kim DH, Kim JH, Shul YG (2019) Core-shell nanostructured heteropoly acid-functionalized metal-organic frameworks: Bifunctional heterogeneous catalyst for efficient biodiesel production. Appl Catal B Environ 242:51–59. https://doi.org/10.1016/j.apcatb.2018.09.071

    Article  CAS  Google Scholar 

  29. Wang A, Quan W, Zhang H (2021) Efficient synthesis of biodiesel catalyzed by chitosan-based Catalysts. Int J Chem Eng 2021. https://doi.org/10.1155/2021/8971613

  30. Intiso A, Martinez-Triguero J, Cucciniello R, Rossi F, Palomares AE (2019) Influence of the synthesis method on the catalytic activity of mayenite for the oxidation of gas-phase trichloroethylene. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-018-36708-2

    Article  CAS  Google Scholar 

  31. López Granados M, Alba-Rubio AC, Vila F, Martín Alonso D, Mariscal R (2010) Surface chemical promotion of Ca oxide catalysts in biodiesel production reaction by the addition of monoglycerides, diglycerides and glycerol. J Catal 276:229–236. https://doi.org/10.1016/j.jcat.2010.09.016

    Article  CAS  Google Scholar 

  32. Li J, Xu H, Fei ZA, Liu H, Qiao DR, Cao Y (2012) CaO/NaA combined with enzymatic catalyst for biodiesel transesterification. Catal Commun 28:52–57. https://doi.org/10.1016/j.catcom.2012.07.025

    Article  CAS  Google Scholar 

  33. Wang H, Wang M, Liu S, Zhao N, Wei W, Sun Y (2006) Influence of preparation methods on the structure and performance of CaO-ZrO2 catalyst for the synthesis of dimethyl carbonate via transesterification. J Mol Catal A Chem 258:308–312. https://doi.org/10.1016/j.molcata.2006.05.050

    Article  CAS  Google Scholar 

  34. Mansir N, Hwa Teo S, Lokman Ibrahim M, Yun Hin TY (2017) Synthesis and application of waste egg shell derived CaO supported W-Mo mixed oxide catalysts for FAME production from waste cooking oil: effect of stoichiometry. Energy Convers Manag 151:216–226. https://doi.org/10.1016/j.enconman.2017.08.069

    Article  CAS  Google Scholar 

  35. Dehghani S, Haghighi M (2019) Sono-dispersion of MgO over Al-Ce-doped MCM-41 bifunctional nanocatalyst for one-step biodiesel production from acidic oil: influence of ultrasound irradiation and Si/Ce molar ratio. Ultrason Sonochem 54:142–152. https://doi.org/10.1016/j.ultsonch.2019.02.005

    Article  CAS  PubMed  Google Scholar 

  36. Widayat W, Hadiyanto H, Wardani PWA, Zuhra UA, Prameswari J (2020) Preparation of KI/hydroxyapatite catalyst from phosphate rocks and its application for improvement of biodiesel production. Molecules 25. https://doi.org/10.3390/molecules25112565

  37. Ali RM, Elkatory MR, Hamad HA (2020) Highly active and stable magnetically recyclable CuFe2O4 as a heterogenous catalyst for efficient conversion of waste frying oil to biodiesel. Fuel 268:117297. https://doi.org/10.1016/j.fuel.2020.117297

    Article  CAS  Google Scholar 

  38. Li X, Liu S, Na Z, Lu D, Liu Z (2013) Adsorption, concentration, and recovery of aqueous heavy metal ions with the root powder of Eichhornia crassipes. Ecol Eng 60:160–166. https://doi.org/10.1016/j.ecoleng.2013.07.039

    Article  CAS  Google Scholar 

  39. Shobhana-Gnanaserkhar, Asikin-Mijan N, AbdulKareem-Alsultan G, Sivasangar-Seenivasagam, Izham SM, Taufiq-Yap YH (2020) Biodiesel production via simultaneous esterification and transesterification of chicken fat oil by mesoporous sulfated Ce supported activated carbon. Biomass Bioenergy 141:105714. https://doi.org/10.1016/j.biombioe.2020.105714

  40. Mohebbi S, Rostamizadeh M, Kahforoushan D (2020) Effect of molybdenum promoter on performance of high silica MoO3/B-ZSM-5 nanocatalyst in biodiesel production. Fuel 266. https://doi.org/10.1016/j.fuel.2020.117063

  41. Zul NA, Ganesan S, Hamidon TS, Da OhW, Hussin MH (2021) A review on the utilization of calcium oxide as a base catalyst in biodiesel production. J Environ Chem Eng 9:105741. https://doi.org/10.1016/j.jece.2021.105741

    Article  CAS  Google Scholar 

  42. Wang A, Li H, Zhang H, Pan H, Yang S (2018) Efficient catalytic production of biodiesel with acid-base bifunctional rod-like Ca-B oxides by the sol-gel approach. Materials (Basel) 12:2–6. https://doi.org/10.3390/ma12010083

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yan S, Kim M, Salley SO, Ng KYS (2009) Oil transesterification over calcium oxides modified with lanthanum. Appl Catal A Gen 360:163–170. https://doi.org/10.1016/j.apcata.2009.03.015

    Article  CAS  Google Scholar 

  44. Kong M, Liu Q, Jiang L, Tong W, Yang J, Ren S et al (2019) K+ deactivation of V2O5-WO3/TiO2 catalyst during selective catalytic reduction of NO with NH3: effect of vanadium content. Chem Eng J 370:518–526. https://doi.org/10.1016/j.cej.2019.03.156

    Article  CAS  Google Scholar 

  45. Zhao X, Yan Y, Mao L, Fu M, Zhao H, Sun L et al (2018) A relationship between the V4+/V5+ ratio and the surface dispersion, surface acidity, and redox performance of V2O5-WO3/TiO2 SCR catalysts. RSC Adv 8:31081–31093. https://doi.org/10.1039/c8ra02857e

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun Q, Fang D, Wang S, Shen J, Auroux A (2007) Structural, acidic and redox properties of V2O5/NbP catalysts. Appl Catal A Gen 327:218–225. https://doi.org/10.1016/j.apcata.2007.05.016

    Article  CAS  Google Scholar 

  47. Chary KVR, Reddy KR, Kumar CP, Naresh D, Rao VV, Mestl G (2004) Characterization and reactivity of molybdenum oxide catalysts supported on Nb2O5-TiO2. J Mol Catal A Chem 223:363–369. https://doi.org/10.1016/j.molcata.2004.01.029

    Article  CAS  Google Scholar 

  48. Zhao H, Bennici S, Shen J, Auroux A (2009) The influence of the preparation method on the structural, acidic and redox properties of V2O5-TiO2/SO42- catalysts. Appl Catal A Gen 356:121–128. https://doi.org/10.1016/j.apcata.2008.12.037

    Article  CAS  Google Scholar 

  49. Venkatesan A, Krishna Chandar N, Arjunan S, Marimuthu KN, Mohan Kumar R, Jayavel R (2013) Structural, morphological and optical properties of highly monodispersed PEG capped V2O5 nanoparticles synthesized through a non-aqueous route. Mater Lett 91:228–231. https://doi.org/10.1016/j.matlet.2012.09.117

    Article  CAS  Google Scholar 

  50. Shafeeq KM, Athira VP, Kishor CHR, Aneesh PM (2020) Structural and optical properties of V2O5 nanostructures grown by thermal decomposition technique. Appl Phys A Mater Sci Process 126. https://doi.org/10.1007/s00339-020-03770-5

  51. Maneerung T, Kawi S, Dai Y, Wang CH (2016) Sustainable biodiesel production via transesterification of waste cooking oil by using CaO catalysts prepared from chicken manure. Energy Convers Manag 123:487–497. https://doi.org/10.1016/j.enconman.2016.06.071

    Article  CAS  Google Scholar 

  52. Umdu ES, Tuncer M, Seker E (2009) Transesterification of Nannochloropsis oculata microalga’s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts. Bioresour Technol 100:2828–2831. https://doi.org/10.1016/j.biortech.2008.12.027

    Article  CAS  PubMed  Google Scholar 

  53. Zhang P, Chen Y, Zhu M, Yue C, Dong Y, Leng Y et al (2020) Acidic-basic bifunctional magnetic mesoporous CoFe2O4@(CaO–ZnO) for the synthesis of glycerol carbonate. Catal Lett. https://doi.org/10.1007/s10562-020-03191-2

    Article  Google Scholar 

  54. Farabi MSA, Ibrahim ML, Rashid U, Taufiq-Yap YH (2019) Esterification of palm fatty acid distillate using sulfonated carbon-based catalyst derived from palm kernel shell and bamboo. Energy Convers Manag 181:562–570. https://doi.org/10.1016/j.enconman.2018.12.033

    Article  CAS  Google Scholar 

  55. Mansir N, Teo SH, Rabiu I, Taufiq-Yap YH (2018) Effective biodiesel synthesis from waste cooking oil and biomass residue solid green catalyst. Chem Eng J 347:137–144. https://doi.org/10.1016/j.cej.2018.04.034

    Article  CAS  Google Scholar 

  56. Jiang W, Niu X, Yuan F, Zhu Y, Fu H (2014) Preparation of KF-La2O2CO3 solid base catalysts and their excellent catalytic activities for transesterification of tributyrin with methanol. Catal Sci Technol 4:2957–2968. https://doi.org/10.1039/c4cy00167b

    Article  CAS  Google Scholar 

  57. Yang W, Feng Y, Chu W (2016) Promotion Effect of CaO Modification on Mesoporous Al2O3-Supported Ni Catalysts for CO2 Methanation. Int J Chem Eng 2016. https://doi.org/10.1155/2016/2041821

  58. Song I, Lee H, Jeon SW, Kim DH (2020) Understanding the dynamic behavior of acid sites on TiO2-supported vanadia catalysts via operando DRIFTS under SCR-relevant conditions. J Catal 382:269–279. https://doi.org/10.1016/j.jcat.2019.12.041

    Article  CAS  Google Scholar 

  59. Udayakumar V, Pandurangan A (2014) Catalytic activity of mesoporous V/SBA-15 in the transesterification and esterification of fatty acids. J Porous Mater 21:921–931. https://doi.org/10.1007/s10934-014-9839-y

    Article  Google Scholar 

  60. Mansir N, Teo SH, Rashid U, Saiman MI, Tan YP, Alsultan GA et al (2018) Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review. Renew Sustain Energy Rev 82:3645–3655. https://doi.org/10.1016/j.rser.2017.10.098

    Article  CAS  Google Scholar 

  61. Sani YM, Daud WMAW, Abdul Aziz AR (2014) Activity of solid acid catalysts for biodiesel production: a critical review. Appl Catal A Gen 470:140–161. https://doi.org/10.1016/j.apcata.2013.10.052

    Article  CAS  Google Scholar 

  62. Wang H, Zhou H, Yan Q, Wu X, Zhang H (2023) Superparamagnetic nanospheres with efficient bifunctional acidic sites enable sustainable production of biodiesel from budget non-edible oils. Energy Convers Manag 297. https://doi.org/10.1016/j.enconman.2023.117758

  63. Zhu S, Gao X, Dong F, Zhu Y, Zheng H, Li Y (2013) Design of a highly active silver-exchanged phosphotungstic acid catalyst for glycerol esterification with acetic acid. J Catal 306:155–163. https://doi.org/10.1016/j.jcat.2013.06.026

    Article  CAS  Google Scholar 

  64. Yin X, Fahmi A, Endou A, Miura R, Gunji I, Yamauchi R et al (1999) NH3 adsorption on the brönsted and Lewis acid sites of V2O5(010): a periodic density functional study. J Phys Chem B 103:4701–4706

    Article  CAS  Google Scholar 

  65. Sun C, Dong L, Yu W, Liu L, Li H, Gao F et al (2011) Promotion effect of tungsten oxide on SCR of NO with NH3 for the V2O5-WO3/Ti0.5Sn0.5O2 catalyst: experiments combined with DFT calculations. J Mol Catal A Chem 346:29–38. https://doi.org/10.1016/j.molcata.2011.06.004

  66. Ngaosuwan K, Chaiyariyakul W, Inthong O, Kiatkittipong W, Wongsawaeng D, Assabumrungrat S (2021) La2O3/CaO catalyst derived from eggshells: effects of preparation method and La content on textural properties and catalytic activity for transesterification. Catal Commun 149:106247. https://doi.org/10.1016/j.catcom.2020.106247

    Article  CAS  Google Scholar 

  67. Seely R, Liddy TJ, Rochelle CA, Fletcher RS, Rigby SP (2022) Evolution of the mineralogy, pore structure and transport properties of Nordland Shale following exposure to supercritical carbon dioxide. J Pet Sci Eng 213:110466. https://doi.org/10.1016/j.petrol.2022.110466

    Article  CAS  Google Scholar 

  68. Syamsuddin Y, Hameed BH (2016) Synthesis of glycerol free-fatty acid methyl esters from Jatropha oil over Ca-La mixed-oxide catalyst. J Taiwan Inst Chem Eng 58:181–188. https://doi.org/10.1016/j.jtice.2015.06.041

    Article  CAS  Google Scholar 

  69. Shan R, Chen G, Yan B, Shi J, Liu C (2015) Porous CaO-based catalyst derived from PSS-induced mineralization for biodiesel production enhancement. Energy Convers Manag 106:405–413. https://doi.org/10.1016/j.enconman.2015.09.064

    Article  CAS  Google Scholar 

  70. Nayebzadeh H, Hojjat M (2020) Fabrication of SO42−/MO–Al2O3–ZrO2 (M = Ca, Mg, Sr, Ba) as solid acid-base nanocatalyst used in trans/esterification reaction. Waste Biomass Valorization 11:2027–2037. https://doi.org/10.1007/s12649-018-0526-0

    Article  CAS  Google Scholar 

  71. De Almeida RM, Souza FTC, Júnior MAC, Albuquerque NJA, Meneghetti SMP, Meneghetti MR (2014) Improvements in acidity for TiO2 and SnO2 via impregnation with MoO3 for the esterification of fatty acids. Catal Commun 46:179–182. https://doi.org/10.1016/j.catcom.2013.12.020

    Article  CAS  Google Scholar 

  72. Mansir N, Taufiq-yap YH, Rashid U, Lokman IM (2016) Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: a review. Energy Convers Manag 141:171–182. https://doi.org/10.1016/j.enconman.2016.07.037

    Article  CAS  Google Scholar 

  73. Mulyatun M, Prasetyoko D (2011) Vanadium contribution to the surface modification of titanium silicalite for conversion of benzene to phenol. IPTEK J Technol Sci 22. https://doi.org/10.12962/j20882033.v22i2.58

  74. Habuta Y, Narishige N, Okumura K, Katada N, Niwa M (2003) Catalytic activity and solid acidity of vanadium oxide thin layer loaded on TiO2, ZrO2, and SnO2. Catal Today 78:131–138. https://doi.org/10.1016/S0920-5861(02)00313-9

    Article  CAS  Google Scholar 

  75. Almeida TA, Rodrigues IA, Estrela TS, Nunes CNF, Machado LL, Leão KV et al (2016) Synthesis of ethyl biodiesel from soybean oil, frying oil and chicken fat, using catalysts based on vanadium pentoxide. Energy 97:528–533. https://doi.org/10.1016/j.energy.2015.12.085

    Article  CAS  Google Scholar 

  76. Chen L, He L, Zheng B, Wei G, Li H, Zhang H et al (2023) Bifunctional acid-activated montmorillonite catalyzed biodiesel production from non-food oil: characterization, optimization, kinetic and thermodynamic studies. Fuel Process Technol 250. https://doi.org/10.1016/j.fuproc.2023.107903

  77. Melero JA, Iglesias J, Morales G (2009) Heterogeneous acid catalysts for biodiesel production: current status and future challenges. Green Chem 11:1285–1308. https://doi.org/10.1039/b902086a

    Article  CAS  Google Scholar 

  78. Pasupulety N, Gunda K, Liu Y, Rempel GL, Ng FTT (2013) Production of biodiesel from soybean oil on CaO/Al2O3 solid base catalysts. Appl Catal A Gen 452:189–202. https://doi.org/10.1016/j.apcata.2012.10.006

    Article  CAS  Google Scholar 

  79. Vikár A, Solt HE, Novodárszki G, Mihályi MR, Barthos R, Domján A et al (2021) A study of the mechanism of triglyceride hydrodeoxygenation over alumina-supported and phosphatized-alumina-supported Pd catalysts. J Catal 404:67–79. https://doi.org/10.1016/j.jcat.2021.08.052

    Article  CAS  Google Scholar 

  80. Chen X, Li Z, Chun Y, Yang F, Xu H, Wu X (2020) Effect of the formation of diglycerides/monoglycerides on the kinetic curve in oil transesterification with methanol catalyzed by calcium oxide. ACS Omega 5:4646–4656. https://doi.org/10.1021/acsomega.9b04431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Prameswari J, Widayat W, Buchori L, Hadiyanto H (2022) Novel iron sand-derived α-Fe2O3/CaO2 bifunctional catalyst for waste cooking oil-based biodiesel production. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-21942-z

    Article  Google Scholar 

  82. Wan Omar WNN, Amin NAS (2011) Biodiesel production from waste cooking oil over alkaline modified zirconia catalyst. Fuel Process Technol 92:2397–2405. https://doi.org/10.1016/j.fuproc.2011.08.009

    Article  CAS  Google Scholar 

  83. Liu Y, Zhang P, Fan M, Jiang P (2016) Biodiesel production from soybean oil catalyzed by magnetic nanoparticle MgFe2O4@CaO. Fuel 164:314–321. https://doi.org/10.1016/j.fuel.2015.10.008

    Article  CAS  Google Scholar 

  84. Leung DYC, Guo Y (2006) Transesterification of neat and used frying oil: optimization for biodiesel production. Fuel Process Technol 87:883–890. https://doi.org/10.1016/j.fuproc.2006.06.003

    Article  CAS  Google Scholar 

  85. Li Y, Zhu K, Jiang Y, Chen L, Zhang H, Li H et al (2023) Biomass-derived hydrophobic metal-organic frameworks solid acid for green efficient catalytic esterification of oleic acid at low temperatures. Fuel Process Technol 239. https://doi.org/10.1016/j.fuproc.2022.107558

  86. Amani H, Ahmad Z, Asif M, Hameed BH (2014) Transesterification of waste cooking palm oil by MnZr with supported alumina as a potential heterogeneous catalyst. J Ind Eng Chem 20:4437–4442. https://doi.org/10.1016/j.jiec.2014.02.012

    Article  CAS  Google Scholar 

  87. Asikin-mijan N, Lee HV, Taufiq-yap YH (2015) Chemical Engineering Research and Design Synthesis and catalytic activity of hydration – dehydration treated clamshell derived CaO for biodiesel production. Chem Eng Res Des 102:368–377. https://doi.org/10.1016/j.cherd.2015.07.002

    Article  CAS  Google Scholar 

  88. Yan B, Zhang Y, Chen G, Shan R, Ma W, Liu C (2016) The utilization of hydroxyapatite-supported CaO-CeO2 catalyst for biodiesel production. Energy Convers Manag 130:156–164. https://doi.org/10.1016/j.enconman.2016.10.052

    Article  CAS  Google Scholar 

  89. Teo SH, Goto M, Taufiq-Yap YH (2015) Biodiesel production from Jatropha curcas L. oil with Ca and La mixed oxide catalyst in near supercritical methanol conditions. J Supercrit Fluids 104:243–50. https://doi.org/10.1016/j.supflu.2015.06.023

    Article  CAS  Google Scholar 

  90. Lokman IM, Rashid U, Yunus R, Taufiq-Yap YH (2014) Carbohydrate-derived solid acid catalysts for biodiesel production from low-cost feedstocks: a review. Catal Rev – Sci Eng 56:187–219. https://doi.org/10.1080/01614940.2014.891842.

  91. Xie W, Zhao L (2014) Heterogeneous CaO-MoO3-SBA-15 catalysts for biodiesel production from soybean oil. Energy Convers Manag 79:34–42. https://doi.org/10.1016/j.enconman.2013.11.041

    Article  CAS  Google Scholar 

  92. Olutoye MA, Hameed BH (2013) A highly active clay-based catalyst for the synthesis of fatty acid methyl ester from waste cooking palm oil. Appl Catal A Gen 450:57–62. https://doi.org/10.1016/j.apcata.2012.09.049

    Article  CAS  Google Scholar 

  93. Tan YH, Abdullah MO, Nolasco-hipolito C, Taufiq-yap YH (2015) Waste ostrich- and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: catalyst characterization and biodiesel yield performance. Appl Energy 160:58–70. https://doi.org/10.1016/j.apenergy.2015.09.023

    Article  ADS  CAS  Google Scholar 

  94. Keihani M, Esmaeili H, Rouhi P (2018) Biodiesel production from chicken fat using nano-calcium oxide catalyst and improving the fuel properties via blending with diesel. Phys Chem Res 6:521–529. https://doi.org/10.22036/pcr.2018.114565.1453

  95. Joshi S, Gogate PR, Moreira PF, Giudici R (2017) Intensification of biodiesel production from soybean oil and waste cooking oil in the presence of heterogeneous catalyst using high speed homogenizer. Ultrason Sonochem 39:645–653. https://doi.org/10.1016/j.ultsonch.2017.05.029

    Article  CAS  PubMed  Google Scholar 

  96. Eevera T, Rajendran K, Saradha S (2009) Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions. Renew Energy 34:762–765. https://doi.org/10.1016/j.renene.2008.04.006

    Article  CAS  Google Scholar 

  97. Esmaeili H, Foroutan R (2018) Optimization of biodiesel production from goat tallow using alkaline catalysts and combining them with diesel. Chem Chem Technol 12:120–126. https://doi.org/10.23939/chcht12.01.120

  98. Lee HV, Juan JC, Taufiq-Yap YH (2015) Preparation and application of binary acid-base CaO-La2O3 catalyst for biodiesel production. Renew Energy 74:124–132. https://doi.org/10.1016/j.renene.2014.07.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the Ministry of Education, Culture, Research and Technology Republic of Indonesia for the financial support through the Penelitian Disertasi Doktor (PDD) Scheme for research project Year 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Widayat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 94 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulyatun, M., Prameswari, J., Istadi, I. et al. Synthesis Method Effect on the Catalytic Performance of Acid–Base Bifunctional Catalysts for Converting Low-Quality Waste Cooking Oil to Biodiesel. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04643-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04643-9

Keywords

Navigation