Skip to main content
Log in

Mechanistic investigations of ruthenium(III) catalyzed oxidation of pentoxifylline by copper(III) periodate complex in aqueous alkaline medium

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The kinetics of the oxidation of ruthenium(III)-catalyzed oxidation of pentoxifylline (PTX) by diperiodatocuprate(III) (DPC) in aqueous alkaline medium at a constant ionic strength of 0.30 mol dm−3 was studied spectrophotometrically. The reaction between PTX and DPC in alkaline medium in the presence of Ru(III) exhibits 1:2 stoichiometry (PTX:DPC). The reaction was of first order in DPC, less than the unit order in [PTX] and [OH] and negative fractional order in [IO4 ]. The order in [Ru(III)] was unity. Intervention of free radicals was observed in the reaction. The main products were identified by TLC and spectral studies including LC-MS. The oxidation reaction in alkaline medium has been shown to proceed via a Ru(III)-PTX complex, which reacts with monoperiodatocuprate(III) to decompose in a rate determining step followed by a fast step to give the products. The reaction constants involved in different steps of the mechanism were calculated. The activation parameters with respect to the slow step of the mechanism were computed and discussed, and thermodynamic quantities were also determined. The active species of catalyst and oxidant have been identified.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7

Similar content being viewed by others

References

  1. Reddy KB (1990) Transition Met Chem 15:9

    Article  CAS  Google Scholar 

  2. Sethuram B (2003) Some aspects of electron transfer reactions involving organic molecules. Allied Publishers (P) Ltd, New Delhi

    Google Scholar 

  3. Delanian S, Porcher R, Rudant J, Lefaix J-L (2005) J Clin Oncol 23:8570

    Article  Google Scholar 

  4. Rott O, Cash E, Fleischer B (2005) Eur J Immun 23:1745

    Article  Google Scholar 

  5. Berman B, Duncan MR (1989) J Invest Derm 92:605

    Article  CAS  Google Scholar 

  6. Das AK (2001) Coord Chem Revs 213:307

    Article  CAS  Google Scholar 

  7. Shivananda KN, Lakshmi B, Jagdeesh RV, Puttaswamy, Mahendra KN (2007) Appl Cat A Gen 326:202

  8. Tandon PK, Mehrotra A, Shrivastava M, Dhusia M, Singh SB (2007) Transition Met Chem 32:991

    Article  Google Scholar 

  9. Singh AK, Srivastava S, Srivastava J, Srivastava R, Singh P (2007) J Mol Cat A Chem 278:72

    Article  CAS  Google Scholar 

  10. Shetti NP, Hosamani RR, Nandibewoor ST (2009) Open Cat J 2:112

    Google Scholar 

  11. Jagdeesh RV, Puttaswamy (2008) J Phys Org Chem 21:844

    Article  Google Scholar 

  12. Gavars R, Baumane L, Stradyn Y, Chekavichus B, Duburs G (1998) Chem Heterocycl Comp 34:950

    Article  CAS  Google Scholar 

  13. Moelwyn-Hughes EA (1947) Kinetics of reactions in solutions. Oxford University Press, London, p 297

    Google Scholar 

  14. Reddy KB, Sethuram B, Navneeth Rao T (1987) Z Phys Chem 268:706

    CAS  Google Scholar 

  15. Bailar JC Jr, Emelens HJ, Nyholm SR, Trotman-Dikenson AF (1975) Comprehensive inorganic chemistry, vol 2. Pergamon Press, Oxford, p 1456

  16. Niu W, Zhu Y, Hu K, Tong C, Yang H (1996) Int J Chem Kinet 28:899

    Article  CAS  Google Scholar 

  17. Jose T, Tuwar SM (2007) J Mol Struct 827:137

    Article  CAS  Google Scholar 

  18. Connick RE, Fine DA (1960) J Am Chem Soc 82:4187

    Article  CAS  Google Scholar 

  19. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, New York

    Google Scholar 

  20. Hiremath DC, Kiran TS, Nandibewoor ST (2007) Int J Chem Kinet 39:236

    Article  CAS  Google Scholar 

  21. Vinod KN, Puttaswamy, Ninge Gowda KN (2009) J Mol Cat A General 298:60

    Article  CAS  Google Scholar 

  22. Rangappa KS, Ragavendra MP, Mahadevappa DS, Channegouda D (1998) J Org Chem 63:531

    Article  CAS  Google Scholar 

  23. Weissberger A, Lewis ES (eds) (1974) Investigation of rates and mechanism of reactions in techniques of chemistry, vol 4. Wiley, New York, p 421

  24. Farokhi SA, Nandibewoor ST (2003) Tetrahedron 59:7595

    Article  CAS  Google Scholar 

  25. Kiran TS, Hiremath CV, Nandibewoor ST (2006) Appl Cat A Gen 305:79

    Article  Google Scholar 

  26. Reddy CS, Vijay Kumar T (1995) Indian J Chem 34:615

    Google Scholar 

  27. Murthy CP, Sethuram B, Navaneeth Rao T (1981) Z Phys Chem 262:252

    Google Scholar 

  28. Jeffery GH, Bassett J, Mendham J, Denny RC (1996) Vogel’s text book of quantitative chemical analysis, ELBS, 5th edn. Longman, Essex, p 455

    Google Scholar 

  29. Panigrahi GP, Misro PK (1978) Indian J Chem 16:762

    Google Scholar 

  30. Feigl F (1975) Spot tests in organic analysis. Elsevier, New York, p 333

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharanappa T. Nandibewoor.

Appendix

Appendix

According to Scheme 1,

$$ {\text{Rate = }}{\frac{{ - {\text{d}}\left[ {\text{DPC}} \right]}}{\text{dt}}} = k\left[ {\text{C}} \right]\left[ {{\text{Cu}}\left( {{\text{H}}_{2} {\text{IO}}_{6} } \right)\left( {{\text{H}}_{2} {\text{O}}} \right)_{2} } \right] = {\frac{{kK_{1} K_{2} K_{3} \left[ {\text{DPC}} \right]\left[ {\text{PTX}} \right]\left[ {{\text{OH}}^{ - } } \right]\left[ {{\text{Ru}}\left( {\text{III}} \right)} \right]}}{{\left[ {{\text{H}}_{3} {\text{IO}}_{6}^{2 - } } \right]}}} $$
(11)

The total concentration of DPC, [DPC]T, is given by (subscripts T and f stand for total and free, respectively)

$$ \left[ {\text{DPC}} \right]_{\text{T}} = \left[ {\text{DPC}} \right]_{\text{f}} + \left[ {{\text{Cu}}\left( {{\text{H}}_{2} {\text{IO}}_{6} } \right)\left( {{\text{H}}_{3} {\text{IO}}_{6} } \right)} \right]^{2 - } + \left[ {{\text{Cu}}\left( {{\text{H}}_{2} {\text{IO}}_{6} } \right)\left( {{\text{H}}_{2} {\text{O}}} \right)_{2} } \right] $$
$$ \left[ {\text{DPC}} \right]_{\text{T}} = \left[ {\text{DPC}} \right]_{\text{f}} + K_{1} \left[ {{\text{OH}}^{ - } } \right]\left[ {\text{DPC}} \right] + {\frac{{K_{2} \left[ {{\text{Cu}}\left( {{\text{H}}_{2} {\text{IO}}_{6} } \right)\left( {{\text{H}}_{3} {\text{IO}}_{6} } \right)} \right]^{2 - } }}{{\left[ {{\text{H}}_{3} {\text{IO}}_{6}^{2 - } } \right]}}} $$
$$ \left[ {\text{DPC}} \right]_{\text{T}} = \left[ {\text{DPC}} \right]_{\text{f}} \left[ {1 + K_{1} \left[ {{\text{OH}}^{ - } } \right] + {\frac{{K_{1} K_{2} \left[ {{\text{OH}}^{ - } } \right]}}{{\left[ {{\text{H}}_{3} {\text{IO}}_{6}^{2 - } } \right]}}}} \right] $$
$$ \left[ {\text{DPC}} \right]_{\text{f}} = {\frac{{\left[ {\text{DPC}} \right]_{\text{T}} \left[ {{\text{H}}_{3} {\text{IO}}_{6}^{2 - } } \right]}}{{\left[ {{\text{H}}_{3} {\text{IO}}_{6}^{2 - } } \right] + K_{1} \left[ {{\text{OH}}^{ - } } \right]\left[ {{\text{H}}_{3} {\text{IO}}_{6}^{2 - } } \right] + K_{1} K_{2} \left[ {{\text{OH}}^{ - } } \right]}}} $$
(12)

Similarly,

$$ \left[ {{\text{Ru}}\left( {\text{III}} \right)} \right]_{\text{T}} = \left[ {{\text{Ru}}\left( {\text{III}} \right)} \right]_{\text{f}} + \left[ {\text{C}} \right] = \left[ {{\text{Ru}}\left( {\text{III}} \right)} \right]_{\text{f}} + K_{3} \left[ {\text{PTX}} \right]\left[ {{\text{Ru}}\left( {\text{III}} \right)} \right]_{\text{f}} $$
$$ \left[ {{\text{Ru}}\left( {\text{III}} \right)} \right]_{\text{f}} = {\frac{{\left[ {{\text{Ru}}\left( {\text{III}} \right)} \right]_{\text{T}} }}{{1 + K_{3} \left[ {\text{PTX}} \right]}}} $$
(13)
$$ \left[ {\text{PTX}} \right]_{\text{f}} = {\frac{{\left[ {\text{PTX}} \right]_{\text{T}} }}{{1 + K_{3} \left[ {{\text{Ru}}\left( {\text{III}} \right)} \right]}}} $$

In view of the low concentrations of Ru(III) used, we have

$$ \left[ {\text{PTX}} \right]_{\text{T}} = \left[ {\text{PTX}} \right]_{\text{f}} $$
(14)

Similarly,

$$ \left[ {{\text{OH}}^{ - } } \right]_{\text{T}} = \left[ {{\text{OH}}^{ - } } \right]_{\text{f}} $$
(15)

Substituting Eqs. (12), (13), (14), and (15) in Eq. (11) and omitting the T and f subscripts, we get

$$ {\text{Rate = }}{\frac{{ - {\text{d}}\left[ {\text{DPC}} \right]}}{\text{dt}}} = {\frac{{kK_{1} K_{2} K_{3} \left[ {\text{DPC}} \right]\left[ {\text{PTX}} \right]\left[ {{\text{OH}}^{ - } } \right]\left[ {{\text{Ru}}\left( {\text{III}} \right)} \right]}}{\begin{gathered} \left[ {{\text{H}}_{3} {\text{IO}}_{6}^{2 - } } \right] + K_{1} \left[ {{\text{OH}}^{ - } } \right]\left[ {{\text{H}}_{3} {\text{IO}}_{6}^{2 - } } \right] + K_{1} K_{2} \left[ {{\text{OH}}^{ - } } \right] + K_{1} K_{2} K_{3} \left[ {{\text{OH}}^{ - } } \right]\left[ {\text{PTX}} \right] \hfill \\ + K_{3} \left[ {{\text{H}}_{3} {\text{IO}}_{6}^{2 - } } \right]\left[ {\text{PTX}} \right] + K_{1} K_{2} \left[ {\text{PTX}} \right]\left[ {{\text{OH}}^{ - } } \right]\left[ {{\text{H}}_{3} {\text{IO}}_{6}^{2 - } } \right] \hfill \\ \end{gathered} }} $$

The terms (K 3[H3IO6 2−][PTX]) and (K 1 K 3[PTX][OH][H3IO6 2−]) of the denominator are neglected in view of their lower values as compared to the periodate used in the study. Therefore,

$$ {\text{Rate = }}{\frac{{ - {\text{d}}\left[ {\text{DPC}} \right]}}{\text{dt}}} = {\frac{{kK_{1} K_{2} K_{3} \left[ {\text{DPC}} \right]\left[ {\text{PTX}} \right]\left[ {{\text{OH}}^{ - } } \right]\left[ {{\text{Ru}}\left( {\text{III}} \right)} \right]}}{{\left[ {{\text{H}}_{3} {\text{IO}}_{6}^{2 - } } \right] + K_{1} \left[ {{\text{OH}}^{ - } } \right]\left[ {{\text{H}}_{3} {\text{IO}}_{6}^{2 - } } \right] + K_{1} K_{2} \left[ {{\text{OH}}^{ - } } \right] + K_{1} K_{2} K_{3} \left[ {{\text{OH}}^{ - } } \right]\left[ {\text{PTX}} \right]}}} $$
(16)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malode, S.J., Abbar, J.C. & Nandibewoor, S.T. Mechanistic investigations of ruthenium(III) catalyzed oxidation of pentoxifylline by copper(III) periodate complex in aqueous alkaline medium. Monatsh Chem 142, 469–479 (2011). https://doi.org/10.1007/s00706-011-0458-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-011-0458-x

Keywords

Navigation