Skip to main content
Log in

Kinetics of Ag/TiO2-photocatalyzed iodide ion oxidation

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Ag-doped TiO2 (anatase) samples (mass fraction w Ag = 0.01 and w Ag = 0.02) of 15.9 and 14.5 nm mean particle size and 11.46 and 10.14 m2 g−1 BET surface area were prepared by photodeposition. Doping results in surface plasmon resonance of the metallic silver nanoclusters at around 500 nm, but the absorption edge remains unaltered at 365 nm. Ag-doping remarkably enhances the photooxidation of iodide ion under UV light; iodine formation with Ag/TiO2 with w Ag = 0.01 is 16 times greater than with bare TiO2. The reaction conforms to Langmuir–Hinshelwood kinetics with regard to both I and O2. Increase of pH slows down iodine formation and sacrificial electron donors arrest the reaction. Pre-sonication of the catalyst slurry hinders the photocatalysis. Generation of iodine is much greater in acetonitrile than in water. Under the experimental conditions, Ag/TiO2 with w Ag = 0.01 is more efficient than Ag/TiO2 with w Ag = 0.02, and the enhanced photocatalysis is likely to be because of suppression of electron–hole pair recombination. Kinetic analysis reveals that increasing the Ag mass fraction from 0.01 to 0.02 enhances the surface pseudo-first-order rate constant but inhibits the adsorption of iodide ion and the oxygen molecule on the illuminated oxide surface.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Thompson TL, Yates JT Jr (2006) Chem Rev 106:4428

    Article  CAS  Google Scholar 

  2. Gaya UI, Abdullah AH (2008) J Photochem Photobiol C 9:1

    Article  CAS  Google Scholar 

  3. Diebold U (2003) Surf Sci Rep 48:53

    Article  CAS  Google Scholar 

  4. Osgood R (2006) Chem Rev 106:4379

    Article  CAS  Google Scholar 

  5. Zhao J, Li B, Onda K, Feng M, Petek H (2006) Chem Rev 106:4402

    Article  CAS  Google Scholar 

  6. Shiraishi Y, Saito N, Hirai T (2005) J Am Chem Soc 127:12820

    Article  CAS  Google Scholar 

  7. Peller J, Wiest O, Kamat PV (2004) J Phys Chem A 108:10925

    Article  CAS  Google Scholar 

  8. Du Y, Rabani J (2003) J Phys Chem B 107:11970

    Article  CAS  Google Scholar 

  9. Sun L, Bolton JR (1996) J Phys Chem 100:4127

    Article  CAS  Google Scholar 

  10. Linsebigler AL, Lu G, Yates JT Jr (1995) Chem Rev 95:735

    Article  CAS  Google Scholar 

  11. Bansal A, Madhavi S, Tan TTY, Lim TM (2008) Catal Today 131:250

    Article  CAS  Google Scholar 

  12. Young C, Lim TM, Chiang K, Scott J, Amal R (2008) Appl Catal B 78:1

    Article  CAS  Google Scholar 

  13. Sa J, Fernandez-Garcia M, Anderson JA (2008) Catal Commun 9:1991

    Article  CAS  Google Scholar 

  14. Paramasivam I, Macak JM, Schmuki P (2008) Electrochem Commun 10:71

    Article  CAS  Google Scholar 

  15. Seery MK, George R, Floris P, Pillai SC (2007) J Photochem Photobiol A 189:258

    Article  CAS  Google Scholar 

  16. Lee MS, Hong SS, Mohseni M (2005) J Mol Catal A 242:135

    Article  CAS  Google Scholar 

  17. Sung-Suh HM, Choi JR, Hah HJ, Koo SM, Bae YC (2004) J Photochem Photobiol A 163:37

    Article  CAS  Google Scholar 

  18. Trans H, Scott J, Chiang K, Amal R (2006) J Photochem Photobiol A 183:41

    Article  Google Scholar 

  19. Zhang Z, Ito S, Moser JE, Zakeeruddin SM, Gratzel M (2009) ChemPhysChem 10:1834

    Article  CAS  Google Scholar 

  20. Green ANM, Chandler RE, Haque SA, Nelson J, Durrant JR (2005) J Phys Chem B 109:142

    Article  CAS  Google Scholar 

  21. Fitzmaurice DJ, Eschie M, Frei H (1993) J Phys Chem 97:3806

    Article  CAS  Google Scholar 

  22. Karunakaran C, Anilkumar P (2008) Solar Energy Mater Solar Cells 92:490

    Article  CAS  Google Scholar 

  23. Karunakaran C, Anilkumar P (2007) J Mol Catal A 265:153

    Article  CAS  Google Scholar 

  24. Karunakaran C, Senthilvelan S, Karuthapandian S, Balaraman K (2004) Catal Commun 5:283

    Article  CAS  Google Scholar 

  25. Ishibashi K-I, Fujishima A, Watanabe T, Hashimoto K (2000) J Photochem Photobiol A 134:139

    Article  CAS  Google Scholar 

  26. Ohno T, Fujihara K, Saito S, Matsumura M (1997) Solar Energy Mater Solar Cells 45:169

    Article  CAS  Google Scholar 

  27. Hodak J, Quinteros C, Litter MI, Roman ES (1996) J Chem Soc Faraday Trans 92:5081

    Article  CAS  Google Scholar 

  28. Tennakone K, Kumarasinghe AR, Kumara GRRA, Wijayantha KGU, Sirimanne PM (1997) J Photochem Photobiol A 108:193

    Article  CAS  Google Scholar 

  29. Zhang L, Yu JC (2005) Catal Commun 6:684

    Article  CAS  Google Scholar 

  30. Zhang F, Pi Y, Cui J, Yang Y, Zhang X, Guan N (2007) J Phys Chem C 111:3756

    Article  CAS  Google Scholar 

  31. Hirano K, Nitta H, Sawada K (2005) Ultrason Sonochem 12:271

    Article  CAS  Google Scholar 

  32. Karunakaran C, Senthilvelan S, Karuthapandian S (2005) J Photochem Photobiol A 172:207

    Article  CAS  Google Scholar 

  33. Vincze L, Kemp TJ (1995) J Photochem Photobiol A 87:257

    Article  CAS  Google Scholar 

  34. Karunakaran C, Sujatha MP, Gomathisankar P (2009) Monatsh Chem 140:1269

    Article  CAS  Google Scholar 

  35. Kuhn HJ, Braslavsky SE, Schmidt R (2004) Pure Appl Chem 76:2105

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support through research grant no. F.12-64/2003 (SR) by the University Grants Commission (UGC), New Delhi, is thankfully acknowledged, and P.A. is grateful to UGC for PF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chockalingam Karunakaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karunakaran, C., Anilkumar, P. & Gomathisankar, P. Kinetics of Ag/TiO2-photocatalyzed iodide ion oxidation. Monatsh Chem 141, 529–537 (2010). https://doi.org/10.1007/s00706-010-0288-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-010-0288-2

Keywords

Navigation