Skip to main content
Log in

Photocatalytic growth and plasmonic properties of Ag nanoparticles on TiO2 films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Using nanoparticulate TiO2 films, the photocatalytic growth of Ag nanoparticles (NPs) in the AgNO3 aqueous solution has been studied in terms of reduction, nucleation, and coalescence. It was proved that Ag primary particles were formed in a growth time of <1 s after the photocatalysis started. The growth dynamics was found to be critical for isotropic and anisotropic growth of Ag NPs, depending on the AgNO3 concentration and surface properties of TiO2 films. In the AgNO3 solutions of ≤300 mg/L, the isotropic growth dominates the growth dynamic behavior, producing irregularly spherical Ag NPs. In the AgNO3 solutions of ≥400 mg/L, the increased reduction rate promotes the formation of Ag nanoplates in the product. Ostwald ripening and oriented attachment were suggested to be the mechanisms dominating the isotropic and anisotropic growth, respectively. A photocatalytic growth model of Ag NPs was proposed by taking Ag atom and Ag+ ion diffusion into consideration. The plasmonic properties of the Ag–TiO2 films were studied in terms of extinction, surface enhanced Raman scattering, and fluorescence enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995).

    Article  CAS  Google Scholar 

  2. X. Chen and S.S. Mao: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).

    Article  CAS  Google Scholar 

  3. M. Es-Souni, M. Es-Souni, S. Habouti, N. Pfeiffer, A. Lahmar, M. Dietze, and C-H. Solterbeck: Brookite formation in TiO2-Ag nanocomposites and visible light induced templated growth of Ag nanostructures in TiO2. Adv. Funct. Mater. 20, 377 (2010).

    Article  CAS  Google Scholar 

  4. K. Awazu, M. Fujimaki, C. Rockstuhl, and J. Tominaga: A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc. 130, 1676 (2008).

    Article  CAS  Google Scholar 

  5. W. Hou and S.B. Cronin: A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 23, 1612 (2013).

    Article  CAS  Google Scholar 

  6. Y. Tian and T. Tatsuma: Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632 (2005).

    Article  CAS  Google Scholar 

  7. Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S.B. Cronin: Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11, 1111 (2011).

    Article  CAS  Google Scholar 

  8. Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima: Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nat. Mater. 2, 29 (2003).

    Article  CAS  Google Scholar 

  9. I. Tanahashi, H. Iwagishi, and G. Chang: Localized surface plasmon resonance sensing properties of photocatalytically prepared Au/TiO2 films. Mater. Lett. 62, 2714 (2008).

    Article  CAS  Google Scholar 

  10. D.W. Li, L.J. Pan, S. Li, K. Liu, S.F. Wu, and W. Peng: Controlled preparation of uniform TiO2-catalyzed silver nanoparticle films for surface-enhanced Raman scattering. J. Phys. Chem. C 117, 6861 (2013).

    Article  CAS  Google Scholar 

  11. A. Mills, G. Hill, M. Stewart, D. Graham, W.E. Smith, S. Hodgen, P.J. Halfpenny, K. Faulds, and P. Robertson: Characterization of novel Ag on TiO2 films for surface-enhanced Raman scattering. Appl. Spectrosc. 58, 922 (2004).

    Article  CAS  Google Scholar 

  12. I. Tanabe, K. Matsubara, S.D. Stridge, E. Kazuma, and K.L. Kelly: Photocatalytic growth and plasmon resonance-assisted photoelectrochemical toppling of upright Ag nanoplates on a nanoparticulate TiO2 film. Chem. Commun. 24, 3621 (2009).

    Article  Google Scholar 

  13. K. Matsubara, K.L. Kelly, N. Sakai, and T. Tatsuma: Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals. J. Mater. Chem. 19, 5526 (2009).

    Article  CAS  Google Scholar 

  14. E. Kazuma, K. Matsubara, K.L. Kelly, N. Sakai, and T. Tatsuma: Bi- and uniaxially oriented growth and plasmon resonance properties of anisotropic Ag nanoparticles on single crystalline TiO2 surfaces. J. Phys. Chem. C 113, 4758 (2009).

    Article  CAS  Google Scholar 

  15. R. Viswanatha, P.K. Santra, C. Dasgupta, and D.D. Sarma: Growth mechanism of nanocrystals in solution: ZnO, a case study. Phys. Rev. Lett. 98, 255501 (2007).

    Article  Google Scholar 

  16. A. Moores and F. Goettmann: The plasmon band in noble metal nanoparticles: An introduction to theory and applications. New J. Chem. 30, 1121 (2006).

    Article  CAS  Google Scholar 

  17. T. Ung, L.M. Liz-Marza, and P. Mulvaney: Optical properties of thin films of Au@SiO2 particles. J. Phys. Chem. B 105, 3441 (2001).

    Article  CAS  Google Scholar 

  18. R. Jin, Y.C. Cao, E. Hao, G.S. Me, G.C. Schatz, and C.A. Mirkin: Controlling anisotropic nanoparticles growth through plasmon excitation. Science 425, 487 (2004).

    Google Scholar 

  19. Y. Sakai, I. Tanabe, and T. Tatsuma: Orientation-selective removal of upright Ag nanoplates from a TiO2 film. Nanoscale 3, 4101 (2011).

    Article  CAS  Google Scholar 

  20. I. Tanabe, K. Matsubara, N. Sakai, and T. Tatsuma: Photoelectrochemical and optical behavior of single upright Ag nanoplates on a TiO2 film. J. Phys. Chem. C 115, 1695 (2011).

    Article  CAS  Google Scholar 

  21. S. Li, Q. Tao, D.W. Li, and Q.Y. Zhang: Controlled anisotropic growth of Ag nanoparticles on oil-decorated TiO2 films with photocatalytic reduction method. J. Mater. Res. 29, 2497 (2014).

    Article  CAS  Google Scholar 

  22. M. Ohring: Materials Science of Thin Films: Deposition and Structure (Academic Press, San Diego, 2002).

    Google Scholar 

  23. S. Yin, F. Huang, J. Zhang, J. Zheng, and Z. Lin: The effects of particle concentration and surface charge on the oriented attachment growth kinetics of CdTe nanocrystals in H2O. J. Phys. Chem. C 115, 10357 (2011).

    Article  CAS  Google Scholar 

  24. K.L. Kelly, E. Coronado, L.L. Zhao, and G.C. Schatz: The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668 (2003).

    Article  CAS  Google Scholar 

  25. E. Prodan, C. Radloff, N.J. Halas, and P. Nordlander: A hybridization model for the plasmon response of complex nanostructures. Science 302, 419 (2003).

    Article  CAS  Google Scholar 

  26. F.J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K.R. Catchpole: Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates. Opt. Express 19(S2), A146 (2011).

    Article  CAS  Google Scholar 

  27. P. Hildebrandt and M. Stockburger: Surface-enhanced resonance Raman-spectroscopy of rhodamine-6G adsorbed on colloidal silver. J. Phys. Chem. 88, 5935 (1984).

    Article  CAS  Google Scholar 

  28. Q. Tao, S. Li, Q.Y. Zhang, D.W. Kang, J.S. Yang, W.W. Qiu, and K. Liu: Controlled growth of ZnO nanorods on textured silicon wafer and the application for highly effective and recyclable SERS substrate by decorating Ag nanoparticles. Mater. Res. Bull. 54, 6 (2014).

    Article  CAS  Google Scholar 

  29. F.J. Garcia-Vidal and J.B. Pendry: Collective theory for surface enhanced Raman scattering. Phys. Rev. Lett. 77, 1163–1166 (1996).

    Article  CAS  Google Scholar 

  30. Y. Yang, S. Matsubara, L.M. Xiong, T. Hayakawa, and M. Nogami: Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties. J. Phys. Chem. C 111, 9095–9104 (2007).

    Article  CAS  Google Scholar 

  31. J.R. Lakowicz, C.D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J.J. Huang: Advances in surface-enhanced fluorescence. J. Fluoresc. 14, 425 (2004).

    Article  CAS  Google Scholar 

  32. J.R. Lakowicz: Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission. Anal. Biochem. 337, 171 (2005).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

One of the authors, K. Liu, thanks the support from Science and Technology Project Fund of Liaoning Province under Grant No. 2013231005 and Fundamental Research Funds for the Central Universities of China under Grant No. DUT13LK21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Yu Zhang.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Tao, Q., Li, DW. et al. Photocatalytic growth and plasmonic properties of Ag nanoparticles on TiO2 films. Journal of Materials Research 30, 304–314 (2015). https://doi.org/10.1557/jmr.2014.378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.378

Navigation