Skip to main content
Log in

Formation of novel 1,3-thiazole- and 1,2-thiazole-fused aporphines and study on the simultaneously occurring benzothiazole–benzisothiazole-type isomerization

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The synthesis and acid-catalyzed rearrangement of novel thiazolomorphinandienes have been presented. An isomerization was observed simultaneously with the backbone transformation. An extensive study was performed to determine the major effects of the isomerization of 2′-alkyl- and aryl-substituted thiazoloapocodeines into 3′-alkyl- and arylisothiazoloapocodeines. The obtained results provided another practical example of the reversible benzisothiazole–benzothiazole-type isomerization emphasizing the determining role of the thermal effects in the occurrence of these isomerization products. The obtained experimental results and the proposed mechanism were in agreement with the calculated DFT data.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 7

Similar content being viewed by others

Notes

  1. Provided the fundamental experimental method for the study of photoisomerization. Japanese scientists applied a Riko UVL-100HP (100 W) high-pressure mercury vapour lamp operated at wavelengths between 180 and 420 nm with a peak at 366 nm. Duration of the irradiation was 42 h. It means a total of 4,200 Wh of irradiation. In our photoisomerization studies the same quantity of irradiation was used.

  2. Applied media are commonly used in the pharmaceutical industry for dissolution tests, and their quality is in agreement with pharmaceutical requirements: pH = 1.2—0.1 N hydrochloride solution. pH = 3.0—0.05 M sodium chloride solution adjusted to pH 3.0 with hydrochloride solution. pH = 4.5, 6.8 and 7.4—0.05 M sodium dihydrogen phosphate buffer adjusted to the target pH with sodium hydroxide solution. pH = 10.0—0.05 M ammonium chloride solution adjusted to pH 10.0 with ammonia solution.

  3. The model for thebaine (1) obtained at the B3LYP/6-31G* level was very much in accord with X-ray data (ref.: Mahler CH, Stevens ED, Tundell M-L, Nolan SP (1996) Acta Crystallogr C 52:3193) for compound 1. All computations were performed using a dual-core Intel Xeon 5130 processor at 2.0 GHz. The CPU times for the geometry optimization steps were in the range of 4,812–7,332 s. The total time for geometry steps was 321 h.

  4. See Footnote 2.

  5. See Footnote 1.

References

  1. Catteau JP, Lablache-Combier A, Pollet A (1969) J Chem Soc D 1018

  2. Vernin G, Poite J-C, Metzger J, Aune J-P, Dou HJM (1971) Bull Soc Chim Fr 1103

  3. Vernin G, Jauffred R, Ricard C, Dou HJM, Metzger J (1972) J Chem Soc Perkin Trans 2 1145

    Google Scholar 

  4. Maeda M, Kojima M (1973) Tetrahedron Lett 14:3523

    Article  Google Scholar 

  5. Pavlik JK, Pandit CR, Samuel CJ, Day AC (1992) J Org Chem 58:3407

    Article  Google Scholar 

  6. Pavlik JW, Tongcharoensirikul P, Bird NP, Day AC, Barltrop JA (1994) J Am Chem Soc 116:2292

    Article  CAS  Google Scholar 

  7. D’Auria M (2002) Tetrahedron 58:8037

    Article  CAS  Google Scholar 

  8. D’Auria M (1998) Targets Heterocycl Syst 2:233

    CAS  Google Scholar 

  9. Pavlik JW, Tongcharoensirikul P, French KM (1998) J Org Chem 63:559

    Article  Google Scholar 

  10. Zlotin SG, Bobrov AV, Chunikhin KS (1999) Russ Chem Bull 48:1339

    Article  CAS  Google Scholar 

  11. Pavlik JW, Tongcharoensirikul P (2000) J Org Chem 65:3626

    Article  CAS  Google Scholar 

  12. Zlotin SG, Bobrov AV (2000) Russ Chem Bull 49:956

    Article  CAS  Google Scholar 

  13. Sharp RT, Leeman KR, Bryant DE, Horan GJ (2003) Tetrahedron Lett 44:1559

    Article  CAS  Google Scholar 

  14. Gilchrist TL (1985) Heterocyclic chemistry. Longman Scientefic & Technical Publishers, UK, p 214

  15. Tóth M, Gyulai Zs, Berényi S, Sipos A (2007) Lett Org Chem 4:539

    Article  Google Scholar 

  16. Conroy H (1955) J Am Chem Soc 77:5960

    Article  CAS  Google Scholar 

  17. Berényi S, Hosztafi S, Makleit S, Szeifert I (1982) Acta Chim Acad Sci Hung 110:363

    Google Scholar 

  18. Berényi S, Makleit S, Rantal F (1985) Acta Chim Acad Sci Hung 120:201

    Google Scholar 

  19. Csutorás Cs, Berényi S, Makleit S (1996) Synth Commun 26:2251

    Article  Google Scholar 

  20. Maeda M, Kojima M (1978) J Chem Soc Perkin Trans 1 685

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr., Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Revision A.3, Gaussian, Pittsburgh

  22. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  23. Becke AD (1998) Phys Rev A 38:3098

    Article  Google Scholar 

  24. Lee WY, Parr RG (1980) Phys Rev B 37:785

    Article  Google Scholar 

  25. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Article  CAS  Google Scholar 

  26. McIver JW, Komornicki AK J Am Chem Soc 94: 2625

  27. González C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  Google Scholar 

  28. González C, Schlegel HB (1990) J Phys Chem 94:5523

    Article  Google Scholar 

  29. Fukui K (1981) Acc Chem Res 14:363

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Sándor Antus for substantial discussions and to the National Science Foundation (Grant OTKA reg. No. T049436 and NI61336) for the financial support. We thank the Péter Pázmány Programme (NKTH, RET006/2004) for allowing us to use the microwave reactor and to Szabolcs Fekete for the valuable technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Sipos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sipos, A., Berényi, S. Formation of novel 1,3-thiazole- and 1,2-thiazole-fused aporphines and study on the simultaneously occurring benzothiazole–benzisothiazole-type isomerization. Monatsh Chem 140, 387–396 (2009). https://doi.org/10.1007/s00706-008-0038-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-008-0038-x

Keywords

Navigation