Skip to main content

Advertisement

Log in

miR-29a is a negative regulator of influenza virus infection through targeting of the frizzled 5 receptor

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Influenza A virus (IAV) infections result in a large number of deaths and substantial economic losses each year. MicroRNAs repress gene expression and are involved in virus-host interactions. miR-29a is known to have anti-tumor and anti-fibrotic effects. However, the role of miR-29a in IAV infection is unclear. In the present study, we investigated the effect of miR-29a on IAV infection and the mechanisms by which it functions. IAV infection was found to cause decreased miR-29a expression in lung epithelial A549 cells and mouse lungs. Overexpression of miR-29a reduced IAV mRNA and protein levels and progeny virus production in HEK293 and A549 cells. Inhibition of IAV infection by miR-29a was observed with different strains of IAV, including A/PR/8/34, A/WSN/1933, and clinical isolates A/OK/3052/09 and A/OK/309/06 H3N2. Knockout of miR-29a using CRISPR/Cas9 resulted in an increase in viral mRNA and protein levels, confirming that miR-29a suppresses IAV infection. A 3’ untranslated region (3’-UTR) reporter assay showed that miR-29a had binding sites in the 3’-UTR of the Wnt-Ca2+ signaling receptor frizzled 5 gene, and overexpression of miR-29a reduced the level of the endogenous frizzled 5 protein. Wnt5a treatment of HEK293 and A549 cells enhanced IAV infection. Our results suggest that miR-29a inhibits IAV infection, probably via the frizzled 5 receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shrestha S et al (2015) The role of influenza in the epidemiology of pneumonia. Sci Rep 5:15314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Taubenberger JK, Morens DM (2008) The pathology of influenza virus infections. Annu Rev Pathol 3:499–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang Y et al (2007) MicroRNA: past and present. Front Biosci 12:2316–2329

    Article  CAS  PubMed  Google Scholar 

  4. Peng S et al (2018) Endogenous cellular MicroRNAs mediate antiviral defense against influenza A virus. Mol Ther Nucleic Acids 10:361–375

    Article  CAS  PubMed  Google Scholar 

  5. Song L et al (2010) Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells. J Virol 84(17):8849–8860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ma YJ et al (2012) Cellular microRNA let-7c inhibits M1 protein expression of the H1N1 influenza A virus in infected human lung epithelial cells. J Cell Mol Med 16(10):2539–2546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gui S et al (2015) Mir-302c mediates influenza A virus-induced IFNbeta expression by targeting NF-kappaB inducing kinase. FEBS Lett 589(24 Pt B):4112–4118

    Article  CAS  PubMed  Google Scholar 

  8. Ingle H et al (2015) The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication. Sci Signal 8(406):ra126

    Article  PubMed  CAS  Google Scholar 

  9. Maemura T et al (2018) Lung-derived exosomal miR-483-3p regulates the innate immune response to influenza virus infection. J Infect Dis 217(9):1372–1382

    Article  CAS  PubMed  Google Scholar 

  10. Guan Z et al (2012) Induction of the cellular microRNA-29c by influenza virus contributes to virus-mediated apoptosis through repression of antiapoptotic factors BCL2L2. Biochem Biophys Res Commun 425(3):662–667

    Article  CAS  PubMed  Google Scholar 

  11. Pociask DA et al (2017) Epigenetic and transcriptomic regulation of lung repair during recovery from influenza infection. Am J Pathol 187(4):851–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Preusse M, Schughart K, Pessler F (2017) Host genetic background strongly affects pulmonary microRNA expression before and during influenza A virus infection. Front Immunol 8:246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wang Y et al (2009) Identification of differentially expressed miRNAs in chicken lung and trachea with avian influenza virus infection by a deep sequencing approach. BMC Genomics 10:512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wang Y et al (2012a) Integrated analysis of microRNA expression and mRNA transcriptome in lungs of avian influenza virus infected broilers. BMC Genomics 13:278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li Y et al (2010) MicroRNA expression and virulence in pandemic influenza virus-infected mice. J Virol 84(6):3023–3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rogers JV et al (2012) Preliminary microRNA analysis in lung tissue to identify potential therapeutic targets against H5N1 infection. Viral Immunol 25(1):3–11

    Article  CAS  PubMed  Google Scholar 

  17. Wu Z et al (2013) The inhibitory role of Mir-29 in growth of breast cancer cells. J Exp Clin Cancer Res 32:98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zhang M et al (2016) Negative regulation of CDC42 expression and cell cycle progression by miR-29a in breast cancer. Open Med (Wars) 11(1):78–82

    Article  CAS  Google Scholar 

  19. Liu X et al (2015) MicroRNA-29a inhibits cell migration and invasion via targeting Roundabout homolog 1 in gastric cancer cells. Mol Med Rep 12(3):3944–3950

    Article  CAS  PubMed  Google Scholar 

  20. Chen L et al (2014) miR-29a suppresses growth and invasion of gastric cancer cells in vitro by targeting VEGF-A. BMB Rep 47(1):39–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Shi C et al (2017) miR-29a/b/c function as invasion suppressors for gliomas by targeting CDC42 and predict the prognosis of patients. Br J Cancer 117(7):1036–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang XS et al (2012b) MicroRNA-29a and microRNA-142-3p are regulators of myeloid differentiation and acute myeloid leukemia. Blood 119(21):4992–5004

    Article  CAS  PubMed  Google Scholar 

  23. Lu L et al (2014) MicroRNA-29a upregulates MMP2 in oral squamous cell carcinoma to promote cancer invasion and anti-apoptosis. Biomed Pharmacother 68(1):13–19

    Article  CAS  PubMed  Google Scholar 

  24. Pei YF, Lei Y, Liu XQ (2016) MiR-29a promotes cell proliferation and EMT in breast cancer by targeting ten eleven translocation 1. Biochim Biophys Acta 1862(11):2177–2185

    Article  CAS  PubMed  Google Scholar 

  25. Matsumoto Y et al (2016) MiR-29a assists in preventing the activation of human stellate cells and promotes recovery from liver fibrosis in mice. Mol Ther 24(10):1848–1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tan J et al (2014) MicroRNA-29 mediates TGFbeta1-induced extracellular matrix synthesis by targeting wnt/beta-catenin pathway in human orbital fibroblasts. Int J Clin Exp Pathol 7(11):7571–7577

    PubMed  PubMed Central  Google Scholar 

  27. Yang T et al (2013) miR-29 mediates TGFbeta1-induced extracellular matrix synthesis through activation of PI3K-AKT pathway in human lung fibroblasts. J Cell Biochem 114(6):1336–1342

    Article  CAS  PubMed  Google Scholar 

  28. Li SC et al (2016) Microarray study of pathway analysis expression profile associated with microRNA-29a with regard to murine cholestatic liver injuries. Int J Mol Sci 17(3):324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Luo Y et al (2015) miR-29a-3p attenuates hypoxic pulmonary hypertension by inhibiting pulmonary adventitial fibroblast activation. Hypertension 65(2):414–420

    Article  CAS  PubMed  Google Scholar 

  30. Tang B et al (2017) MicroRNA-29a regulates lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophages through the Akt1/ NF-kappaB pathway. Exp Cell Res 360(2):74–80

    Article  CAS  PubMed  Google Scholar 

  31. Kong G et al (2011) Upregulated microRNA-29a by hepatitis B virus X protein enhances hepatoma cell migration by targeting PTEN in cell culture model. PLoS ONE 6(5):e19518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brogaard L et al (2016) Late regulation of immune genes and microRNAs in circulating leukocytes in a pig model of influenza A (H1N2) infection. Sci Rep 6:21812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Song H et al (2013) Microarray analysis of microRNA expression in peripheral blood mononuclear cells of critically ill patients with influenza A (H1N1). BMC Infect Dis 13:257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhu Z et al (2014) Comprehensive characterization of serum microRNA profile in response to the emerging avian influenza A (H7N9) virus infection in humans. Viruses 6(4):1525–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tambyah PA et al (2013) microRNAs in circulation are altered in response to influenza A virus infection in humans. PLoS ONE 8(10):e76811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang X et al (2019) miR-193b represses influenza A virus infection by inhibiting Wnt/beta-catenin signalling. Cell Microbiol 21(5):e13001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Guo Y et al (2014) Wnt3a mitigates acute lung injury by reducing P2X7 receptor-mediated alveolar epithelial type I cell death. Cell Death Dis 5:e1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Matsuoka Y et al (2013) A comprehensive map of the influenza A virus replication cycle. BMC Syst Biol 7:97

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yan D et al (2013) Dual myxovirus screen identifies a small-molecule agonist of the host antiviral response. J Virol 87(20):11076–11087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bottini A et al (2012) Identification of small molecules that interfere with H1N1 influenza A viral replication. ChemMedChem 7(12):2227–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lutz A et al (2005) Virus-inducible reporter genes as a tool for detecting and quantifying influenza A virus replication. J Virol Methods 126(1–2):13–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chang H et al (2016) CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep 6:22312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baarsma HA, Konigshoff M (2017) “WNT-er is coming”: WNT signalling in chronic lung diseases. Thorax 72(8):746–759

    Article  CAS  PubMed  Google Scholar 

  44. Blumenthal A et al (2006) The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood 108(3):965–973

    Article  CAS  PubMed  Google Scholar 

  45. Kuhl M et al (2000) Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J Biol Chem 275(17):12701–12711

    Article  CAS  PubMed  Google Scholar 

  46. Liu C et al (2016) A secreted WNT-ligand-binding domain of FZD5 generated by a frameshift mutation causes autosomal dominant coloboma. Hum Mol Genet 25(7):1382–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fang J et al (2012) Epigenetic changes mediated by microRNA miR29 activate cyclooxygenase 2 and lambda-1 interferon production during viral infection. J Virol 86(2):1010–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang X et al (2014) Induction of the cellular miR-29c by influenza virus inhibits the innate immune response through protection of A20 mRNA. Biochem Biophys Res Commun 450(1):755–761

    Article  CAS  PubMed  Google Scholar 

  49. Cavodeassi F et al (2005) Early stages of zebrafish eye formation require the coordinated activity of Wnt11, Fz5, and the Wnt/beta-catenin pathway. Neuron 47(1):43–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu C, Nathans J (2008) An essential role for frizzled 5 in mammalian ocular development. Development 135(21):3567–3576

    Article  CAS  PubMed  Google Scholar 

  51. Pandit KV, Milosevic J, Kaminski N (2011) MicroRNAs in idiopathic pulmonary fibrosis. Transl Res 157(4):191–199

    Article  CAS  PubMed  Google Scholar 

  52. Bibaki E et al (2018) miR-185 and miR-29a are similarly expressed in the bronchoalveolar lavage cells in IPF and lung cancer but common targets DNMT1 and COL1A1 show disease specific patterns. Mol Med Rep 17(5):7105–7112

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kawashita Y et al (2011) Circulating miR-29a levels in patients with scleroderma spectrum disorder. J Dermatol Sci 61(1):67–69

    Article  CAS  PubMed  Google Scholar 

  54. Roderburg C et al (2011) Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 53(1):209–218

    Article  CAS  PubMed  Google Scholar 

  55. Xuan J et al (2017) MiR-29a and miR-652 attenuate liver fibrosis by inhibiting the differentiation of CD4+ T cells. Cell Struct Funct 42(2):95–103

    Article  PubMed  Google Scholar 

  56. Xiao J et al (2012) miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Mol Ther 20(6):1251–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. He Y et al (2013) MicroRNA-29 family, a crucial therapeutic target for fibrosis diseases. Biochimie 95(7):1355–1359

    Article  CAS  PubMed  Google Scholar 

  58. Hsu YC et al (2016) Protective effects of miR-29a on diabetic glomerular dysfunction by modulation of DKK1/Wnt/beta-catenin signaling. Sci Rep 6:30575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nguyen-Van-Tam JS et al (2010) Risk factors for hospitalisation and poor outcome with pandemic A/H1N1 influenza: United Kingdom first wave (May-September 2009). Thorax 65(7):645–651

    Article  CAS  PubMed  Google Scholar 

  60. Li P et al (2012) Serial evaluation of high-resolution CT findings in patients with pneumonia in novel swine-origin influenza A (H1N1) virus infection. Br J Radiol 85(1014):729–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Singh V, Sharma BB, Patel V (2012) Pulmonary sequelae in a patient recovered from swine flu. Lung India 29(3):277–279

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kovner AV et al (2012) Structural and functional changes in pulmonary macrophages and lungs of mice infected with influenza virus A/H5N1 A/goose/Krasnoozerskoye/627/05. Bull Exp Biol Med 153(2):229–232

    Article  CAS  PubMed  Google Scholar 

  63. Qiao J et al (2009) Pulmonary fibrosis induced by H5N1 viral infection in mice. Respir Res 10:107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Gillian Air (University of Oklahoma Health Sciences Center) for kindly providing A/Oklahoma/3052/09 H1N1, A/WSN/1933 H1N1 and A/Oklahoma/309/2006 H3N2. lentiCRISPR v2 was a gift from Dr. Feng Zhang (Addgene plasmid # 52961).

Funding

This work was supported by National Institutes of Health grants AI121591, GM103648 and HL135152, the Oklahoma Center for Advancement of Science and Technology HR20-050, the Oklahoma Center for Adult Stem Cell Research – A Program of the Tobacco Settlement Endowment Trust (TSET), and the Lundberg-Kienlen Endowment Fund (to LL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Liu.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. The animal procedures were approved by the Institutional Animal Care and Use Committee at Oklahoma State University.

Additional information

Handling Editor: Ayato Takada.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Liang, Y., Bamunuarachchi, G. et al. miR-29a is a negative regulator of influenza virus infection through targeting of the frizzled 5 receptor. Arch Virol 166, 363–373 (2021). https://doi.org/10.1007/s00705-020-04877-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04877-z

Navigation