Skip to main content

Advertisement

Log in

Development of an antigen-capture enzyme-linked immunosorbent assay for diagnosis of Aleutian mink disease virus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Aleutian mink disease (AMD), caused by Aleutian mink disease virus (AMDV), is a very important infectious disease of mink. Currently, elimination of antibody- or antigen-positive animals is the most successful strategy for eradicating AMD, but the claw-cutting method of blood sampling is difficult to perform and painful for the animal. In this study, we aimed to establish an antigen capture enzyme-linked immunosorbent assay (AC-ELISA) method for the efficient detection of AMDV antigens using fecal samples. A purified mouse monoclonal antibody (mAb) was used as the capture antibody, and a rabbit polyclonal antibody (pAb) was used as the detection antibody. The assay was optimized by adjusting a series of parameters. Using a cutoff value of 0.205, the limit of detection of the AC-ELISA for strain AMDV-G antigen was 2 μg/mL, and there was no cross-reaction with other mink viruses. The intra- and inter-assay standard deviations were below 0.046, and the correlation of variance (CV) values were 1.24–7.12% when testing fecal samples. Compared with conventional PCR results, the specificity and sensitivity were 91.5% and 90.6%, respectively, and the concordance rate between the two methods was 91.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Jensen TH, Hammer AS, Chriel M (2014) Monitoring chronic infection with a field strain of Aleutian mink disease virus. Vet Microbiol 168(2–4):420–427. https://doi.org/10.1016/j.vetmic.2013.11.041

    Article  PubMed  Google Scholar 

  2. Canuti M, Whitney HG, Lang AS (2015) Amdoparvoviruses in small mammals: expanding our understanding of parvovirus diversity, distribution, and pathology. Front Microbiol 6:1119. https://doi.org/10.3389/fmicb.2015.01119

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cotmore SF, Agbandje-McKenna M, Chiorini JA, Mukha DV, Pintel DJ, Qiu J, Soderlund-Venermo M, Tattersall P, Tijssen P, Gatherer D, Davison AJ (2014) The family Parvoviridae. Adv Virol 159(5):1239–1247. https://doi.org/10.1007/s00705-013-1914-1

    Article  CAS  Google Scholar 

  4. Huang Q, Luo Y, Cheng F, Best SM, Bloom ME, Qiu J (2014) Molecular characterization of the small nonstructural proteins of parvovirus Aleutian mink disease virus (AMDV) during infection. Virology 452–453:23–31. https://doi.org/10.1016/j.virol.2014.01.005

    Article  CAS  PubMed  Google Scholar 

  5. Xi J, Wang J, Yu Y, Zhang X, Mao Y, Hou Q, Liu W (2016) Genetic characterization of the complete genome of an Aleutian mink disease virus isolated in north China. Virus Genes 52(4):463–473. https://doi.org/10.1007/s11262-016-1320-3

    Article  CAS  PubMed  Google Scholar 

  6. Yi L, Cheng Y, Zhang M, Cao Z, Tong M, Cheng S, Yan X (2016) Identification of a novel Aleutian mink disease virus B-cell epitope using a monoclonal antibody against VP2 protein. Virus Res 223:39–42. https://doi.org/10.1016/j.virusres.2016.06.014

    Article  CAS  PubMed  Google Scholar 

  7. Bloom ME, Best SM, Hayes SF, Wells RD, Wolfinbarger JB, McKenna R, Agbandje-McKenna M (2001) Identification of Aleutian mink disease parvovirus capsid sequences mediating antibody-dependent enhancement of infection, virus neutralization, and immune complex formation. J Virol 75(22):11116–11127. https://doi.org/10.1128/JVI.75.22.11116-11127.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu T, Wang Y, Ge J, Ma Q, Yan W, Zhang Y, Zhao L, Chen H (2017) Identification and characterization of a novel B-cell epitope on Aleutian mink disease virus capsid protein VP2 using a monoclonal antibody. Virus Res. https://doi.org/10.1016/j.virusres.2017.12.008

    Article  PubMed  PubMed Central  Google Scholar 

  9. Castelruiz Y, Blixenkrone-Moller M, Aasted B (2005) DNA vaccination with the Aleutian mink disease virus NS1 gene confers partial protection against disease. Vaccine 23(10):1225–1231. https://doi.org/10.1016/j.vaccine.2004.09.003

    Article  CAS  PubMed  Google Scholar 

  10. Aasted B, Alexandersen S, Christensen J (1998) Vaccination with Aleutian mink disease parvovirus (AMDV) capsid proteins enhances disease, while vaccination with the major non-structural AMDV protein causes partial protection from disease. Vaccine 16(11–12):1158–1165

    Article  CAS  Google Scholar 

  11. Sang Y, Ma J, Hou Z, Zhang Y (2012) Phylogenetic analysis of the VP2 gene of Aleutian mink disease parvoviruses isolated from 2009 to 2011 in China. Virus Genes 45(1):31–37. https://doi.org/10.1007/s11262-012-0734-9

    Article  CAS  PubMed  Google Scholar 

  12. Wang Z, Wu W, Hu B, Zhang H, Bai X, Zhao J, Zhang L, Yan X (2014) Molecular epidemiology of Aleutian mink disease virus in China. Virus Res 184:14–19. https://doi.org/10.1016/j.virusres.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  13. Leimann A, Knuuttila A, Maran T, Vapalahti O, Saarma U (2015) Molecular epidemiology of Aleutian mink disease virus (AMDV) in Estonia, and a global phylogeny of AMDV. Virus Res 199:56–61. https://doi.org/10.1016/j.virusres.2015.01.011

    Article  CAS  PubMed  Google Scholar 

  14. Hussain I, Price GW, Farid AH (2014) Inactivation of Aleutian mink disease virus through high temperature exposure in vitro and under field-based composting conditions. Vet Microbiol 173(1–2):50–58. https://doi.org/10.1016/j.vetmic.2014.07.014

    Article  CAS  PubMed  Google Scholar 

  15. Broll S, Alexandersen S (1996) Investigation of the pathogenesis of transplacental transmission of Aleutian mink disease parvovirus in experimentally infected mink. J Virol 70(3):1455–1466

    Article  CAS  Google Scholar 

  16. Chen X, Song C, Liu Y, Qu L, Liu D, Zhang Y, Liu M (2016) Development of an enzyme-linked immunosorbent assay based on fusion VP2332-452 Antigen for detecting antibodies against Aleutian mink disease virus. J Clin Microbiol 54(2):439–442. https://doi.org/10.1128/JCM.02625-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aasted B, Cohn A (1982) Inhibition of precipitation in counter current electrophoresis. A sensitive method for detection of mink antibodies to Aleutian disease virus. Acta Pathol Microbiol Immunol Scand Sect C Immunol 90(1):15–19

    CAS  Google Scholar 

  18. Knuuttila A, Aronen P, Saarinen A, Vapalahti O (2009) Development and evaluation of an enzyme-linked immunosorbent assay based on recombinant VP2 capsids for the detection of antibodies to Aleutian mink disease virus. Clin Vaccine Immunol CVI 16(9):1360–1365. https://doi.org/10.1128/CVI.00148-09

    Article  CAS  PubMed  Google Scholar 

  19. Andersson AM, Wallgren P (2013) Evaluation of two enzyme-linked immunosorbent assays for serodiagnosis of Aleutian mink disease virus infection in mink. Acta Vet Scand 55:86. https://doi.org/10.1186/1751-0147-55-86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ma F, Zhang L, Wang Y, Lu R, Hu B, Lv S, Xue X, Li X, Ling M, Fan S, Zhang H, Yan X (2016) Development of a peptide ELISA for the diagnosis of Aleutian mink disease. PLoS ONE 11(11):e0165793. https://doi.org/10.1371/journal.pone.0165793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gong QL, Li D, Diao NC, Liu Y, Li BY, Tian T, Ge GY, Zhao B, Song YH, Li DL, Leng X, Du R (2020) Mink Aleutian disease seroprevalence in China during 1981–2017: A systematic review and meta-analysis. Microb Pathog 139:103908. https://doi.org/10.1016/j.micpath.2019.103908

    Article  PubMed  Google Scholar 

  22. Ho CF, Huang SW, Chan KW, Wu JS, Chang SP, Wang CY (2017) Development of an antigen-capture ELISA for beak and feather disease virus. Adv Virol. https://doi.org/10.1007/s00705-017-3596-6

    Article  Google Scholar 

  23. Yun B, Li D, Zhu H, Liu W, Qin L, Liu Z, Wu G, Wang Y, Qi X, Gao H, Wang X, Gao Y (2013) Development of an antigen-capture ELISA for the detection of avian leukosis virus p27 antigen. J Virol Methods 187(2):278–283. https://doi.org/10.1016/j.jviromet.2012.11.027

    Article  CAS  PubMed  Google Scholar 

  24. Stern D, Pauly D, Zydek M, Miller L, Piesker J, Laue M, Lisdat F, Dorner MB, Dorner BG, Nitsche A (2016) Development of a genus-specific antigen capture ELISA for orthopoxviruses—target selection and optimized screening. PLoS ONE 11(3):e0150110. https://doi.org/10.1371/journal.pone.0150110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jahns H, Daly P, McElroy MC, Sammin DJ, Bassett HF, Callanan JJ (2010) Neuropathologic features of Aleutian disease in farmed mink in Ireland and molecular characterization of Aleutian mink disease virus detected in brain tissues. J Vet Diagn Investig 22(1):101–105. https://doi.org/10.1177/104063871002200120

    Article  Google Scholar 

  26. Oie KL, Durrant G, Wolfinbarger JB, Martin D, Costello F, Perryman S, Hogan D, Hadlow WJ, Bloom ME (1996) The relationship between capsid protein (VP2) sequence and pathogenicity of Aleutian mink disease parvovirus (ADV): a possible role for raccoons in the transmission of ADV infections. J Virol 70(2):852–861

    Article  CAS  Google Scholar 

  27. Jensen TH, Christensen LS, Chriel M, Uttenthal A, Hammer AS (2011) Implementation and validation of a sensitive PCR detection method in the eradication campaign against Aleutian mink disease virus. J Virol Methods 171(1):81–85. https://doi.org/10.1016/j.jviromet.2010.10.004

    Article  CAS  PubMed  Google Scholar 

  28. Persson S, Jensen TH, Blomstrom AL, Appelberg MT, Magnusson U (2015) Aleutian mink disease virus in free-ranging mink from Sweden. PLoS ONE 10(3):e0122194. https://doi.org/10.1371/journal.pone.0122194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 31700140).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Taofeng lu and Yuanzhi Wang; funding acquisition, Hongyan Chen and Taofeng Lu; investigation, Yuanzhi Wang; methodology, Taofeng Lu; project administration, Lili Zhao; supervision, Lili Zhao and Hongyan Chen; visualization, Taofeng Lu and Yanjun Wu; writing – original draft, Taofeng Lu; writing – review and editing, Taofeng Lu and Shuguang Wu.

Corresponding author

Correspondence to Hongyan Chen.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest.

Ethical approval

The animal experiment was approved by Harbin Veterinary Research Institute (2017-009).

Informed consent

Informed consent was obtained from individual farmers for the samples used in this study.

Additional information

Handling Editor: Ana Cristina Bratanich.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, T., Wang, Y., Wu, Y. et al. Development of an antigen-capture enzyme-linked immunosorbent assay for diagnosis of Aleutian mink disease virus. Arch Virol 166, 83–90 (2021). https://doi.org/10.1007/s00705-020-04850-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04850-w

Navigation