Leichtfried T, Dobrovolny S, Reisenzein H et al (2019) Apple chlorotic fruit spot viroid: a putative new pathogenic viroid on apple characterized by next-generation sequencing. Arch Virol 164:3137–3140. https://doi.org/10.1007/s00705-019-04420-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Škorić D (2017) Viroid Biology. In: Hadidi A, Flores R, Randles JW, Palukaitis P (eds) Viroids and satellites. Elsevier/Academic Press, London, pp 53–61
Chapter
Google Scholar
Verhoeven J, Jansen CCC, Roenhorst JW et al (2009) Pepper chat fruit viroid: Biological and molecular properties of a proposed new species of the genus Pospiviroid. Virus Res 144:209–214. https://doi.org/10.1016/j.virusres.2009.05.002
CAS
Article
PubMed
PubMed Central
Google Scholar
Antignus Y, Lachman O, Pearlsman M (2007) Spread of tomato apical stunt viroid (TASVd) in greenhouse tomato crops is associated with seed transmission and bumble bee activity. Plant Dis 91:47–50. https://doi.org/10.1094/PD-91-0047
CAS
Article
PubMed
PubMed Central
Google Scholar
Pacumbaba EP, Zelazny B, Orense JC, Rillo EP (1994) Evidence for pollen and seed transmission of the coconut cadang-cadang viroid in Cocos nucifera. J Phytopathol 142:37–42. https://doi.org/10.1111/j.1439-0434.1994.tb00005.x
Article
Google Scholar
Di Serio F, Martínez de Alba A-E, Navarro B et al (2010) RNA-dependent RNA polymerase 6 delays accumulation and precludes meristem invasion of a viroid that replicates in the nucleus. J Virol 84:2477. https://doi.org/10.1128/JVI.02336-09
CAS
Article
PubMed
PubMed Central
Google Scholar
Singh RP, Dilworth AD (2003) Biology. In: Hadidi A, Flores R, Randles JW, Semancik JS (eds) Viroids. CSIRO, Collingwood, pp 30–48
Google Scholar
Walia Y, Dhir S, Zaidi AA, Hallan V (2015) Apple scar skin viroid naked RNA is actively transmitted by the whitefly Trialeurodes vaporariorum. RNA Biol 12:1131–1138. https://doi.org/10.1080/15476286.2015.1086863
Article
PubMed
PubMed Central
Google Scholar
Syller J, Marczewski W, Pawłowicz J (1997) Transmission by aphids of potato spindle tuber viroid encapsidated by potato leafroll luteovirus particles. Eur J Plant Pathol 103:285–289. https://doi.org/10.1023/A:1008648822190
Article
Google Scholar
Querci M, Owens RA, Bartolini I et al (1997) Evidence for heterologous encapsidation of potato spindle tuber viroid in particles of potato leafroll virus. J Gen Virol 78:1207–1211
CAS
Article
Google Scholar
Salazar LF, Querci M, Bartolini I, Lazarte V (1995) Aphid transmission of potato spindle tuber viroid assisted by potato leaf roll virus. Fitopatologia 56–58
Galindo J, López M, Aguilar T (1986) Significance of Myzus persicae in the spread of tomato planta macho viroid. Fitopatol Bras 400–410
Matsuura S, Matsushita Y, Kozuka R et al (2009) Transmission of Tomato chlorotic dwarf viroid by bumblebees (Bombus ignitus) in tomato plants. Eur J Plant Pathol 126:111. https://doi.org/10.1007/s10658-009-9515-2
Article
Google Scholar
Salle G (1983) Germination and establishment of Viscum album L. In: Calder M, Bernhardt P (eds) The biology of mistletoes. Academic Press, Sydney, pp 145–159
Google Scholar
Yoshida S, Cui S, Ichihashi Y, Shirasu K (2016) The haustorium, a specialized invasive organ in parasitic plants. Annu Rev Plant Biol 67:643–667. https://doi.org/10.1146/annurev-arplant-043015-111702
CAS
Article
PubMed
PubMed Central
Google Scholar
Hadidi A, Barba M, Hong V, Hallan V (2017) Apple scar skin viroid. In: Hadidi A, Flores R, Randles JW, Palukaitis P (eds) Viroids and satellites. Elsevier/Academic Press, London, pp 217–228
Chapter
Google Scholar
Luigi M, Faggioli F (2011) Development of quantitative real-time RT-PCR for the detection and quantification of Peach latent mosaic viroid. Eur J Plant Pathol 130:109–116. https://doi.org/10.1007/s10658-010-9738-2
Article
Google Scholar
Boonham N, Pérez LG, Mendez MS et al (2004) Development of a real-time RT-PCR assay for the detection of Potato spindle tuber viroid. J Virol Methods 116:139–146. https://doi.org/10.1016/j.jviromet.2003.11.005
CAS
Article
PubMed
PubMed Central
Google Scholar
Sano T, Yoshida H, Goshono M et al (2004) Characterization of a new viroid strain from hops: evidence for viroid speciation by isolation in different host species. J Gen Plant Pathol 70:181–187. https://doi.org/10.1007/s10327-004-0105-z
CAS
Article
Google Scholar
Barba M, Hadidi A (2017) Application of next-generation sequencing technologies to viroids. In: Hadidi A, Flores R, Randles JW, Palukaitis P (eds) Viroids and satellites. Elsevier/Academic Press, London, pp 401–412
Chapter
Google Scholar
Al Rwahnih M, Daubert S, Golino D, Rowhani A (2009) Deep sequencing analysis of RNAs from a grapevine showing Syrah decline symptoms reveals a multiple virus infection that includes a novel virus. Virology 387:395–401. https://doi.org/10.1016/j.virol.2009.02.028
CAS
Article
PubMed
PubMed Central
Google Scholar
Mehle N, Dobnik D, Ravnikar M, Pompe Novak M (2018) Validated reverse transcription droplet digital PCR serves as a higher order method for absolute quantification of Potato virus Y strains. Anal Bioanal Chem 410:3815–3825. https://doi.org/10.1007/s00216-018-1053-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Gutiérrez-Aguirre I, Rački N, Dreo T, Ravnikar M (2015) Droplet digital PCR for absolute quantification of pathogens. In: Lacomme C (ed) Plant pathology: techniques and protocols. Springer, New York, pp 331–347
Chapter
Google Scholar
Gottsberger RA (2010) Development and evaluation of a real-time PCR assay targeting chromosomal DNA of Erwinia amylovora. Lett Appl Microbiol 51:285–292. https://doi.org/10.1111/j.1472-765X.2010.02892.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Owens RA (2008) Viroids. In: Roossinck MJ (ed) Plant virus evolution. Springer, Berlin, pp 83–108
Chapter
Google Scholar
Pecaro S, Berben G, Burns M et al (2019) Overview and recommendations for the application of digital PCR, EUR 29673 EN. Publ Off Eur Union Luxemb. https://doi.org/10.2760/192883
Article
Google Scholar
Baker M (2012) Digital PCR hits its stride. Nat Methods 9:541–544. https://doi.org/10.1038/nmeth.2027
CAS
Article
Google Scholar
Mehle N, Dreo T (2019) Quantitative analysis with droplet digital PCR. In: Musetti R, Pagliari L (eds) Phytoplasmas: methods and protocols. Springer, New York, pp 171–186
Chapter
Google Scholar
Dreo T, Pirc M, Ramšak Ž et al (2014) Optimising droplet digital PCR analysis approaches for detection and quantification of bacteria: a case study of fire blight and potato brown rot. Anal Bioanal Chem 406:6513–6528. https://doi.org/10.1007/s00216-014-8084-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Dupas E, Legendre B, Olivier V et al (2019) Comparison of real-time PCR and droplet digital PCR for the detection of Xylella fastidiosa in plants. J Microbiol Methods 162:86–95. https://doi.org/10.1016/j.mimet.2019.05.010
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu Y, Wang Y, Wang Q et al (2019) Development of a sensitive and reliable reverse transcription droplet digital PCR assay for the detection of citrus yellow vein clearing virus. Arch Virol 164:691–697. https://doi.org/10.1007/s00705-018-04123-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Selvaraj V, Maheshwari Y, Hajeri S, Yokomi R (2019) A rapid detection tool for VT isolates of Citrus tristeza virus by immunocapture-reverse transcriptase loop-mediated isothermal amplification assay. PLOS ONE 14:e0222170. https://doi.org/10.1371/journal.pone.0222170
CAS
Article
PubMed
PubMed Central
Google Scholar
Psifidi A, Dovas CI, Banos G (2010) A comparison of six methods for genomic DNA extraction suitable for PCR-based genotyping applications using ovine milk samples. Mol Cell Probes 24:93–98. https://doi.org/10.1016/j.mcp.2009.11.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Szmidla H, Tkaczyk M, Plewa R, et al (2019) Impact of common Mistletoe (Viscum album L.) on Scots pine forests—a call for action. Forests. https://doi.org/10.3390/f10100847
Kim H-R, Lee S-H, Lee D-H et al (2006) Transmission of Apple scar skin viroid by grafting, using contaminated pruning equipment, and planting infected seeds. Plant Pathol J 22:63–67. https://doi.org/10.5423/PPJ.2006.22.1.063
CAS
Article
Google Scholar
Ye J, Coulouris G, Zaretskaya I et al (2012) Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform 13:134. https://doi.org/10.1186/1471-2105-13-134
CAS
Article
Google Scholar
Bio-Rad Droplet, DigitalTM PCR applications guide—Bio-Rad. http://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6407.pdf. Accessed 10 Oct 2019
Huggett JF, Foy CA, Benes V et al (2013) The Digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin Chem 59:892–902. https://doi.org/10.1373/clinchem.2013.206375
CAS
Article
PubMed
PubMed Central
Google Scholar
Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45. https://doi.org/10.1093/nar/29.9.e45
CAS
Article
PubMed
PubMed Central
Google Scholar
Hadidi A, Barba MM (2011) Apple scar skin viroid. In: Hadidi A, Barba M, Candresse T, Jelkmann W (eds) Virus and virus-like diseases of pome and stone fruits. The American Phytopathological Society, Minnesota, pp 57–62
Chapter
Google Scholar
Flores R, Ambrós LG, Hernández C (2011) Pear blister canker viroid. In: Hadidi A, Barba M, Candresse T, Jelkmann W (eds) Virus and virus-like diseases of pome and stone fruits. The American Phytopathological Society, Minnesota, pp 63–66
Chapter
Google Scholar
Di Serio F, Malfitano M, Alioto D et al (2011) Apple dimple fruit viroid. In: Hadidi A, Barba M, Candresse T, Jelkmann W (eds) Virus and virus-like diseases of pome and stone fruits. The American Phytopathological Society, Minnesota, pp 49–52
Chapter
Google Scholar
Nielsen SL, Enkegaard A, Nicolaisen M et al (2012) No transmission of Potato spindle tuber viroid shown in experiments with thrips (Frankliniella occidentalis, Thrips tabaci), honey bees (Apis mellifera) and bumblebees (Bombus terrestris). Eur J Plant Pathol 133:505–509. https://doi.org/10.1007/s10658-012-9937-0
Article
Google Scholar
Barney CW, Hawksworth FG, Geils BW (1998) Hosts of Viscum album. Eur J For Pathol 28:187–208. https://doi.org/10.1111/j.1439-0329.1998.tb01249.x
Article
Google Scholar
Glatzel G, Geils BW (2008) Mistletoe ecophysiology: host–parasite interactionsThis review is one of a collection of papers based on a presentation from the Stem and Shoot Fungal Pathogens and Parasitic Plants: the Values of Biological Diversity session of the XXII International Union of Forestry Research Organization World Congress meeting held in Brisbane, Queensland, Australia, in 2005. Botany 87:10–15. https://doi.org/10.1139/B08-096
CAS
Article
Google Scholar
Popp M, Richter A (1998) Ecophysiology of xylem-tapping mistletoes. In: Behnke H-D, Esser K, Kadereit JW et al (eds) Progress in botany: genetics cell biology and physiology ecology and vegetation science. Springer, Berlin, pp 659–674
Chapter
Google Scholar
Schulze E-D, Turner NC, Glatzel G (1984) Carbon, water and nutrient relations of two mistletoes and their hosts: a hypothesis*. Plant cell environ 7:293–299. https://doi.org/10.1111/1365-3040.ep11589756
CAS
Article
Google Scholar
Haupt S, Oparka KJ, Sauer N, Neumann S (2001) Macromolecular trafficking between Nicotiana tabacum and the holoparasite Cuscuta reflexa. J Exp Bot 52:173–177. https://doi.org/10.1093/jexbot/52.354.173
CAS
Article
PubMed
PubMed Central
Google Scholar
Kim G, Westwood JH (2015) Macromolecule exchange in Cuscuta–host plant interactions. Curr Opin Plant Biol 26:20–25. https://doi.org/10.1016/j.pbi.2015.05.012
CAS
Article
PubMed
PubMed Central
Google Scholar
Hibberd JM, Dieter Jeschke W (2001) Solute flux into parasitic plants. J Exp Bot 52:2043–2049. https://doi.org/10.1093/jexbot/52.363.2043
CAS
Article
PubMed
PubMed Central
Google Scholar
van Dorst HJM, Peters D (1974) Some biological observations on pale fruit, a viroid-incited disease of cucumber. Neth J Plant Pathol 80:85–96. https://doi.org/10.1007/BF01980613
Article
Google Scholar
Birschwilks M, Haupt S, Hofius D, Neumann S (2006) Transfer of phloem-mobile substances from the host plants to the holoparasite Cuscuta sp. J Exp Bot 57:911–921. https://doi.org/10.1093/jxb/erj076
CAS
Article
PubMed
PubMed Central
Google Scholar
Pribylova J, Spak J (2013) Dodder transmission of phytoplasmas. Methods Mol Biol Clifton NJ 938:41–46. https://doi.org/10.1007/978-1-62703-089-2_4
CAS
Article
Google Scholar
Briggs J (2011) Mistletoe (Viscum album): A brief review of its local status with recent observations on its insects associations and conservation problems. Proc Cotteswold Nat Field Club XLV II:181–191
Google Scholar
Zuber D (2004) Biological flora of Central Europe: Viscum album L. Flora Morphol Distrib Funct Ecol Plants 199:181–203. https://doi.org/10.1078/0367-2530-00147
Article
Google Scholar