Skip to main content

Droplet Digital PCR for Absolute Quantification of Pathogens

  • Protocol
Plant Pathology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1302))

Abstract

The recent advent of different digital PCR (dPCR) platforms is enabling the expansion of this technology for research and diagnostic applications worldwide. The main principle of dPCR, as in other PCR-based methods including quantitative PCR (qPCR), is the specific amplification of a nucleic acid target. The distinctive feature of dPCR is the separation of the reaction mixture into thousands to millions of partitions which is followed by a real time or end point detection of the amplification. The distribution of target sequences into partitions is described by the Poisson distribution, thus allowing accurate and absolute quantification of the target from the ratio of positive against all partitions at the end of the reaction. This omits the need to use reference materials with known target concentrations and increases the accuracy of quantification at low target concentrations compared to qPCR. dPCR has also shown higher resilience to inhibitors in a number of different types of samples. In this chapter we describe the droplet digital PCR (ddPCR) workflow for the detection and quantification of pathogens using the droplet digital Bio-Rad platform QX100. We present as an example the quantification of the quarantine plant pathogenic bacterium, Erwinia amylovora.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. López MM, Llop P, Olmos A et al (2009) Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Curr Issues Mol Biol 11:13–46

    PubMed  Google Scholar 

  2. Mackay IM, Arden KE, Nitsche A (2002) Real-time PCR in virology. Nucleic Acids Res 30:1292–1305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Kubista M, Andrade JM, Bengtsson M et al (2006) The real-time polymerase chain reaction. Mol Aspects Med 27:95–125

    Article  CAS  PubMed  Google Scholar 

  4. Cankar K, Stebih D, Dreo T et al (2006) Critical points of DNA quantification by real-time PCR-effects of DNA extraction method and sample matrix on quantification of genetically modified organisms. BMC Biotechnol 6:37–55

    Article  PubMed Central  PubMed  Google Scholar 

  5. Sedlak RH, Jerome KR (2013) Viral diagnostics in the era of digital polymerase chain reaction. Diagn Microbiol Infect Dis 75:1–4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Sykes PJ, Neoh SH, Brisco MJ et al (1992) Quantitation of targets for PCR by use of limiting dilution. Biotechniques 13:444–449

    CAS  PubMed  Google Scholar 

  7. Dube S, Qin J, Ramakrishnan R (2008) Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device. PLoS One 3(8):e2876

    Article  PubMed Central  PubMed  Google Scholar 

  8. Pekin D, Skhiri Y, Baret JC et al (2011) Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 11:2156–2166

    Article  CAS  PubMed  Google Scholar 

  9. Huggett JF, Foy CA, Benes V (2013) The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin Chem 59:892–902

    Article  CAS  PubMed  Google Scholar 

  10. Rački N, Morisset D, Gutierrez-Aguirre I et al (2014) One-step RT-droplet digital PCR: a breakthrough in the quantification of waterborne RNA viruses. Anal Bioanal Chem 406:661–667

    Article  PubMed Central  PubMed  Google Scholar 

  11. Morisset D, Štebih D, Milavec M et al (2013) Quantitative analysis of food and feed samples with droplet digital PCR. PLoS One 8:e62583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Rački N, Dreo T, Gutierrez-Aguirre I, Blejec A, Ravnikar M (2014) Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples. Plant Methods 10:42

    Google Scholar 

  13. Baker M (2012) Digital PCR hits its stride. Nat Methods 9:541–544

    Article  CAS  Google Scholar 

  14. White RA, Quake SR, Curr K (2012) Digital PCR provides absolute quantitation of viral load for an occult RNA virus. J Virol Methods 179:45–50

    Article  CAS  PubMed  Google Scholar 

  15. Kiselinova M, Pasternak AO, De Spiegelaere W et al (2014) Comparison of droplet digital PCR and seminested real-time PCR for quantification of cell-associated HIV-1 RNA. PLoS One 9:e85999

    Article  PubMed Central  PubMed  Google Scholar 

  16. Buchan BW, Ledeboer NA (2014) Emerging technologies for the clinical microbiology laboratory. Clin Microbiol Rev 27:783–822

    Article  CAS  PubMed  Google Scholar 

  17. Mehle N, Dreo T, Ravnikar M (2014) Quantitative analysis of “flavescence doreé” phytoplasma with droplet digital PCR. Phytopathogenic Mollicutes 4:9–15

    Article  Google Scholar 

  18. Dreo T, Pirc M, Ramšak Z et al (2014) Optimising droplet digital PCR analysis approaches for detection and quantification of bacteria: a case study of fire blight and potato brown rot. Anal Bioanal Chem 406:6513–6528

    Article  CAS  PubMed  Google Scholar 

  19. Leibovitch EC, Brunetto GS, Caruso B et al (2014) Coinfection of human herpesviruses 6A (HHV-6A) and HHV-6B as demonstrated by novel digital droplet PCR assay. PLoS One 9:e92328

    Article  PubMed Central  PubMed  Google Scholar 

  20. Kelley K, Cosman A, Belgrader P et al (2013) Detection of methicillin-resistant Staphylococcus aureus by a duplex droplet digital PCR assay. J Clin Microbiol 51:2033–2039

    Article  PubMed Central  PubMed  Google Scholar 

  21. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  22. Pirc M, Ravnikar M, Tomlinson J, Dreo T (2009) Improved fireblight diagnostics using quantitative real-time PCR detection of Erwinia amylovora chromosomal DNA. Plant Pathol 58:872–881

    Article  CAS  Google Scholar 

  23. Yang R, Paparini A, Monis P et al (2014) Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples. Int J Parasitol. doi:10.1016/j.ijpara.2014.08.004

    PubMed Central  Google Scholar 

  24. Sedlak RH, Kuypers J, Jerome KR (2014) A multiplexed droplet digital PCR assay performs better than qPCR on inhibition prone samples. Diagn Microbiol Infect Dis. doi:10.1016/j.diagmicrobio.2014.09.004

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ion Gutiérrez-Aguirre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gutiérrez-Aguirre, I., Rački, N., Dreo, T., Ravnikar, M. (2015). Droplet Digital PCR for Absolute Quantification of Pathogens. In: Lacomme, C. (eds) Plant Pathology. Methods in Molecular Biology, vol 1302. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2620-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2620-6_24

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2619-0

  • Online ISBN: 978-1-4939-2620-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics