Skip to main content

Advertisement

Log in

Impacts of climate change on spatial drought distribution in the Mediterranean Basin (Turkey): different climate models and downscaling methods

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The impacts of climate change increasingly show themselves in many forms in our everyday lives such as heatwaves and droughts. Drought is one of the critical events today for increasing drought frequency. This study focuses on meteorological drought because it directly affects other drought types. Hence, this study focuses on how the future drought conditions will vary under climate change effects in the Mediterranean basin (Turkey). In doing so, this study utilizes precipitation data from three General Circulation Models (GCMs) and three Regional Circulation Models (RCMs). The GCMs are CNRM-CM6, GFDL-CM4, and MPI-ESM1, while the RCMs are (RCA4)-CNRM-CM5, (Reg CM4)-GFDL-ESM2M, and (RCA4)-MPI-ESM-MR. Mitigating biases of the climate models, this study utilizes four statistical downscaling methods (SD), linear scaling (LS), local intensity scaling (LOCI), power transformation (PT), and distribution mapping (DM). Here, the study has two purposes. The main aim of the paper here is to compare the performance of SD methods in improving the representation of observed climate variables in climate models. In addition, the study shows how different methods will affect the spatial drought distribution in the area under the SSP2 4.5 and SSP5 8.5 scenarios. Consequently, the study uses the standardized precipitation index (SPI) and Z-score index (ZSI) to quantify future drought conditions and reaches the following results. The study reveals that mild drought conditions are prevalent in the basin for future periods, and drought indices go down to − 0.55. The study also shows that different SD methods affect the results obtained by each climate model diversely. For example, while the LS method causes the most drought conditions on the results based on CNRM-CM5 and CNRM-CM6, the DM method has a similar impact on outcomes based on GFDL-CM4 and GFDL-ESM2M and causes the most drought conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated throughout the study are available in the [Enes], [ECMWF], [WCRP], and [GFDL] webpages.

References

  • Ahmadi M, Motamedvaziri B, Ahmadi H, Moeini A, Zehtabiyan GR (2019) Assessment of climate change impact on surface runoff, statistical downscaling and hydrological modeling. Phys Chem Earth Parts a/B/C 114:102800. https://doi.org/10.1016/j.pce.2019.09.002

  • Akhtari R, Morid S, Mahdian MH, Smakhtin V (2009) Assessment of areal interpolation methods for spatial analysis of SPI and EDI drought indices. Int J Climatol: J R Meteorol Soc 29(1):135–145. https://doi.org/10.1002/joc.1691

    Article  Google Scholar 

  • Aksan GN, Bacanlı UG (2021) Comparison of the meteorological drought indices according to the parameter(s) used in the Southeastern Anatolia Region. Turkey. Environ Sci Technol 4(3):230–243. https://doi.org/10.35208/ert.912990

    Article  Google Scholar 

  • Alexander LV, Bador M, Roca R, Contractor S, Donat MG, Nguyen PL (2020) Intercomparison of annual precipitation indices and extremes over global land areas from in situ, space-based and reanalysis products. Environ Res Lett 15(5):055002. https://doi.org/10.1088/1748-9326/ab79e2

    Article  Google Scholar 

  • Alsafadi K, Mohammed SA, Ayugi B, Sharaf M, Harsányi E (2020) Spatial–temporal evolution of drought characteristics over Hungary between 1961 and 2010. Pure Appl Geophys 177:3961–3978

    Article  Google Scholar 

  • Altın TB, Sarıs F, Altın BN (2020) Determination of drought intensity in Seyhan and Ceyhan River Basins, Turkey, by hydrological drought analysis. Theor Appl Climatol 139:95–107. https://doi.org/10.1007/s00704-019-02957-y

    Article  Google Scholar 

  • Antal A, Cheval GPMP, S, (2021) Comparison of spatial interpolation methods for estimating the precipitation distribution in Portugal. Theor Appl Climatol 145:1193–1206. https://doi.org/10.1007/s00704-021-03675-0

    Article  Google Scholar 

  • Araya-Osses D, Casanueva A, Román-Figueroa C et al (2020) Climate change projections of temperature and precipitation in Chile based on statistical downscaling. Clim Dyn 54:4309–4330. https://doi.org/10.1007/s00382-020-05231-4

    Article  Google Scholar 

  • Arias PA, Bellouin N, Coppola E, Jones RG, Krinner G, Marotzke J, Naik V, Palmer MD, Plattner GK, Rogelj J, Rojas M, Sillmann J, Storelvmo T, Thorne PW, Trewin B (2023) Technical summary. Climate Change 2021 – The Physical Science Basis 35–144. https://doi.org/10.1017/9781009157896.002

  • Arnold JG, Fohrer N (2005) SWAT2000: current capabilities and research opportunities in applied watershed modeling. Hydrol Process 19:563–572. https://doi.org/10.1002/hyp.5611,2005

    Article  Google Scholar 

  • Awchi TA, Kalyana MM (2017) Meteorological drought analysis in northern Iraq using SPI and GIS. Sustain Water Resour Manag 3(4):451–463. https://doi.org/10.1007/s40899-017-0111-x

    Article  Google Scholar 

  • Ayugi B, Tan G, Niu R, Dong Z, Ojara M, Mumo L, Babaousmail H, Ongoma V (2020) Evaluation of meteorological drought and flood scenarios over kenya, east africa. Atmos 11(3):307. https://doi.org/10.3390/atmos11030307

  • Azman AH, Tukimat NNA, Malek MA (2022) Analysis of linear scaling method in downscaling precipitation and temperature. Water Resour Manage 36:1–9. https://doi.org/10.1007/s11269-021-03020-0

    Article  Google Scholar 

  • Bador M, Alexander LV, Contractor S, Roca R (2020) Diverse estimates of annual maxima daily precipitation in 22 state-of-the-art quasi-global land observation datasets. Environ Res Lett 15(3):035005. https://doi.org/10.1088/1748-9326/ab6a22

    Article  Google Scholar 

  • Bajracharya AR, Bajracharya SR, Shrestha AB, Maharjan SB (2018) Climate change impact assessment on the hydrological regime of the Kaligandaki basin, Nepal. Sci Total Environ 625:837–848. https://doi.org/10.1016/j.scitotenv.2017.12.332

    Article  CAS  Google Scholar 

  • Baydaroglu Yesilkoy O, Koçak K, Saylan L (2021) Prediction of commonly used drought indices using support vector regression powered by chaotic approach. Ital J Agrometeorol (2):65–76. https://doi.org/10.13128/ijam-970

  • Beck HE, Vergopolan N, Pan M, Levizzani V, Van Dijk AI, Weedon GP, Wood EF (2017) Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol Earth Syst Sci 21(12):6201–6217

    Article  CAS  Google Scholar 

  • Beguería S, Vicente-Serrano SM, Reig F, Latorre B (2013) Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int J Climatol 34(10):3001–3023. https://doi.org/10.1002/joc.3887

    Article  Google Scholar 

  • Berrisford P, Dee D, Poli P, Brugge R, Fielding KR, Fuentes A, Kållberg P, Kobayashi S, Uppala SS, Simmons A (2011) The ERA-interim archive, Version 2.0. https://www.ecmwf.int/en/elibrary/73682-era-interim-archive-version-20

  • Bhatta B, Shrestha S, Shrestha PK, Talchabhadel R (2019) Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River Basin. CATENA 181:1–13. https://doi.org/10.1016/j.catena.2019.104082

    Article  Google Scholar 

  • Bhowmik RD, Sharma A, Sankarasubramanian A (2017) Reducing model structural uncertainty in climate model projections—a rank-based model combination approach. J Clim 30(24):10139–10154. https://doi.org/10.1175/jcli-d-17-0225.1

    Article  Google Scholar 

  • Bolle HJ (2003) Climate, climate variability, and impacts in the Mediterranean area: an overview. In: Bolle HJ (eds) Mediterranean climate. Regional Climate Studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55657-9_2

  • de Borges PA, Franke J, da Anunciação YMT, Weiss H, Bernhofer C (2015) Comparison of spatial interpolation methods for the estimation of precipitation distribution in Distrito Federal Brazil. Theor Appl Climatol 123(1–2):335–348. https://doi.org/10.1007/s00704-014-1359-9

    Article  Google Scholar 

  • Bright JM (2019) The impact of globally diverse GHI training data: evaluation through application of a simple Markov chain downscaling methodology. J Renew Sustain Energy 11(2):023703. https://doi.org/10.1063/1.5085236

    Article  Google Scholar 

  • Brouziyne Y, Abouabdillah A, Hirich A, Bouabid R, Zaaboul R, Benaabidate L (2018) Modeling sustainable adaptation strategies toward a climate-smart agriculture in a Mediterranean watershed under projected climate change scenarios. Agric Syst 162:154–163. https://doi.org/10.1016/j.agsy.2018.01.024

    Article  Google Scholar 

  • Casanueva A, Herrera S, Fernández J, Gutiérrez JM (2016) Towards a fair comparison of statistical and dynamical downscaling in the framework of the EURO-CORDEX initiative. Clim Change 137(3):411–426. https://doi.org/10.1007/s10584-016-1683-4

    Article  Google Scholar 

  • Cavus Y, Aksoy H (2019a) Spatial drought characterization for Seyhan River basin in the Mediterranean region of Turkey. Water 11(7):1331

    Article  Google Scholar 

  • Chen FW, Liu CW (2012) Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environ 10(3):209–222. https://doi.org/10.1007/s10333-012-0319-1

    Article  Google Scholar 

  • Chiew FHS, Peel MC, Mcmahon TA, Siriwardena LWW (2006) Precipitation elasticity of streamflow in catchments across the world. Climate variability and change--hydrological impacts: proceedings of the Fifth Friend World Conference: Held at Havana, Cuba. Havana; IAHS, pp 256–262

  • de Carvalho JWLT, Iensen IRR, dos Santos I (2021) Resilience of hydrologic similarity areas to extreme climate change scenarios in an urban watershed. Urban Water J 18(10):817–828. https://doi.org/10.1080/1573062X.2021.1941136

    Article  Google Scholar 

  • Diaz V, Perez GaC, Van Lanen H, Solomatine D, Varouchakis EA (2020) An approach to characterise spatio-temporal drought dynamics. Adv Water Resour 137:103512. https://doi.org/10.1016/j.advwatres.2020.103512

  • Dikici M (2020) Drought analysis with different indices for the Asi basin (Turkey). Sci Rep 10:20739. https://doi.org/10.1038/s41598-020-77827-z

    Article  CAS  Google Scholar 

  • Edwards DC, McKee TB (1997) Characteristics of 20th century drought in the United States at multiple times scales. Atmos Sci Paper 634:1–30

    Google Scholar 

  • Emmendorfer LR, Dimuro GP (2020) A novel formulation for inverse distance weighting from weighted linear regression. In: Krzhizhanovskaya V et al (eds) Computational Science – ICCS 2020. ICCS 2020. Lecture Notes in Computer Science, vol 12138. Springer, Cham. https://doi.org/10.1007/978-3-030-50417-5_43

  • Fang GH, Yang J, Chen YN, Zammit C (2014) Comparing bias correction methods in downscaling meteorological variables for hydrologic impact study in an arid area in China. Hydrol Earth Syst Sci 11:12659–12696. https://doi.org/10.5194/hessd-11-12659-2014

    Article  Google Scholar 

  • Fang GH, Yang J, Chen YN, Zammit C (2015) Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrol Earth Syst Sci 19(6):2547–2559. https://doi.org/10.5194/hess-19-2547-2015,2015

    Article  Google Scholar 

  • Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27(12):1547–1578. https://doi.org/10.1002/joc.1556

    Article  Google Scholar 

  • Gaur A, Simonović SP (2019) Introduction to physical scaling. In: Teegavarapu R (ed) Elsevier eBooks, pp 199–273. https://doi.org/10.1016/b978-0-12-810985-4.00004-9

  • Gehne M, Hamill TM, Kiladis GN, Trenberth KE (2016) Comparison of global precipitation estimates across a range of temporal and spatial scales. J Clim 29(21):7773–7795. https://doi.org/10.1175/JCLI-D-15-0618.1

    Article  Google Scholar 

  • Greve P, Seneviratne SI (2015) Assessment of future changes in water availability and aridity. Geophys Res Lett 42(13):5493–5499. https://doi.org/10.1002/2015GL064127

    Article  CAS  Google Scholar 

  • Gudmundsson L, Bremnes JB, Haugen JE, Engen-Skaugen T (2012) Downscaling RCM precipitation to the station scale using statistical transformations–a comparison of methods. Hydrol Earth Syst Sci 16(9):3383–3390

    Article  Google Scholar 

  • Gümüş V, Dinsever LD, Avşaroğlu Y (2023) Analysis of drought characteristics and trends during 1965–2020 in the Tigris River basin, Turkey. Theor Appl Climatol 151(3–4):1871–1887. https://doi.org/10.1007/s00704-023-04363-x

  • Hasan DS, Ratnayake U, Shams S, Nayan ZB, Rahman EK (2017) Prediction of climate change in Brunei Darussalam using statistical downscaling model. Theoret Appl Climatol 133:343–360. https://doi.org/10.1007/s00704-017-2172-z

    Article  Google Scholar 

  • Hayes MJ, Svoboda MD, Wiihite DA, Vanyarkho OV (1999) Monitoring the 1996 drought using the standardized precipitation index. Bull Am Meteor Soc 80(3):429–438. https://doi.org/10.1175/1520-0477(1999)080%3c0429:MTDUTS%3e2.0.CO;2

    Article  Google Scholar 

  • Heuvelink GBM (1998) Error propagation in environmental modelling with GIS. Taylor and Francis. https://doi.org/10.4324/9780203016114

  • Hoegh-Guldberg O, Jacob D, Taylor M, Bindi M, Brown S, Camilloni I, Diedhiou A, Djalante R, Ebi KL, Engelbrecht F, Guiot J, Hijioka Y, Mehrotra S, Payne A, Seneviratne SI, Thomas A, Warren RF, Zhou G, Tschakert P (2018) Impacts of 1.5ºC global warming on natural and human systems. Global Warming of 1.5°C: an IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty IPCC. https://www.ipcc.ch/sr15/chapter/chapter-3/

  • Huang S, Li P, Huang Q, Leng G, Hou B, Ma L (2017) The propagation from meteorological to hydrological drought and its potential influence factors. J Hydrol 547:184–195. https://doi.org/10.1016/j.jhydrol.2017.01.041

    Article  Google Scholar 

  • Hundecha Y, Sunyer MA, Lawrence D, Madsen H, Willems P, Bürger G et al (2016) Inter-comparison of statistical downscaling methods for projection of extreme flow indices across Europe. J Hydrol 541:1273–1286. https://doi.org/10.1016/j.jhydrol.2016.08.033

    Article  Google Scholar 

  • IPCC (2021) Summary for Policymakers. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, pp 3−32. https://doi.org/10.1017/9781009157896.001

  • Kirtman B, Power SB, Adedoyin JA, Boer GJ, Bojariu R, Camilloni I, Doblas-Reyes FJ, Fiore AM, Kimoto M, Meehl GA, Prather M, Sarr A, Schär C, Sutton R, van Oldenborgh GJ,  Vecchi G, Wang HJ (2013) Near-term climate change: Projections and predictability. In: Stocker, TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A,  Xia Y, Bex V, Midgley PM (eds.) Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Knutti R, Furrer R, Tebaldi C et al (2010) Challenges in combining projections from multiple climate models. J Clim 23:2739–2758. https://doi.org/10.1175/2009JCLI3361.1

    Article  Google Scholar 

  • Kotamarthi R, Hayhoe K, Mearns LO, Wuebbles D, Jacobs J, Jurado J (2021) Empirical-statistical downscaling. Downscaling techniques for high-resolution climate projections: from global change to local impacts. Cambridge University Press, pp 82–101

  • Langousis A, Mamalakis A, Deidda R, Marrocu M (2016) Assessing the relative effectiveness of statistical downscaling and distribution mapping in reproducing rainfall statistics based on climate model results. Water Resour Res 52(1):471–494. https://doi.org/10.1002/2015wr017556

  • Leander R, Buishand TA (2007) Resampling of regional climate model output for the simulation of extreme river flows. J Hydrol 332(3–4):487–496. https://doi.org/10.1016/j.jhydrol.2006.08.006

    Article  Google Scholar 

  • Lelieveld J, Hadjinicolaou P, Κωστοπούλου Ε, Chenoweth J, Maayar ME, Giannakopoulos C, Hannides CC. S, Lange MA, Tanarhte M, Tyrlis E, Xoplaki E (2012) Climate change and impacts in the Eastern Mediterranean and the Middle East. Climatic Change 114(3–4):667–687. https://doi.org/10.1007/s10584-012-0418-4

  • Luo M, Liu T, Meng F, Duan Y, Frankl A, Bao A, De Maeyer P (2018) Comparing bias correction methods used in downscaling precipitation and temperature from regional climate models: a case study from the Kaidu River basin in western China. Water 10(8):1–21. https://doi.org/10.3390/w10081046

    Article  Google Scholar 

  • Mahmood R, Jia S (2017) An extended linear scaling method for downscaling temperature and its implication in the Jhelum River basin, Pakistan, and India, using CMIP5 GCMs. Theoret Appl Climatol 130(3):725–734. https://doi.org/10.1007/s00704-016-1918-3

    Article  Google Scholar 

  • Mahmood R, Jia S (2016) An extended linear scaling method for downscaling temperature and its implication in the Jhelum River basin, Pakistan, and India, using CMIP5 GCMS. Theor Appl Climatol 130(3–4):725–734. https://doi.org/10.1007/s00704-016-1918-3

    Article  Google Scholar 

  • Maleika W (2020) Inverse distance weighting method optimization in the process of digital terrain model creation based on data collected from a multibeam echosounder. Appl Geomat 12(4):397–407

    Article  Google Scholar 

  • Marvel K, Bonfils C (2013) Identifying external influences on global precipitation. Proc Natl Acad Sci 110(48):19301–19306. https://doi.org/10.1073/pnas.1314382110

    Article  CAS  Google Scholar 

  • Massey Jfj (1951) The Kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relation of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology. Anaheim, California, pp 179–184

  • Mearns LO, Sain S, Leung LR, Bukovsky MS, McGinnis S et al (2013) Climate change projections of the North American regional climate change assessment program (NARCCAP). Clim Change 120(4):965–975. https://doi.org/10.1007/s10584-013-0831-3

    Article  Google Scholar 

  • Mendez M, Maathuis B, Hein-Griggs D, Alvarado-Gamboa L (2020) Performance evaluation of bias correction methods for climate change monthly precipitation projections over Costa Rica. Water 12(2):482. https://doi.org/10.3390/w12020482

    Article  Google Scholar 

  • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1):202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012

    Article  Google Scholar 

  • Muñoz-Sabater J, Dutra E, Agustí-Panareda A, Albergel C et al (2021) Era5-Land: a state-of-the-art global re-analysis dataset for land applications. Earth Syst Sci Data 13(9):4349–4383. https://doi.org/10.5194/essd-13-4349-2021

    Article  Google Scholar 

  • Munyati C, Sinthumule NI (2021) Comparative suitability of ordinary kriging and inverse distance weighted interpolation for indicating intactness gradients on threatened savannah woodland and forest stands. Environ Sustain Indic 12:100151. https://doi.org/10.1016/j.indic.2021.100151

    Article  Google Scholar 

  • Nelson LS (1998) The Anderson-Darling test for normality. J Qual Technol 30(3):298

    Article  Google Scholar 

  • Njouenwet I, Vondou DA, Fita Dassou E, Ayugi BO, Nouayou R (2021) Assessment of agricultural drought during crop-growing season in the Sudano-Sahelian region of Cameroon. Nat Hazards 106:561–577

    Article  Google Scholar 

  • Nkunzimana A, Shuoben B, Guojie W, Alriah MAA, Sarfo I, Zhihui X, Ayugi BO (2021) Assessment of drought events, their trend and teleconnection factors over Burundi, East Africa. Theor Appl Climatol 145:1293–1316

    Article  Google Scholar 

  • Noguera I, Vicente-Serrano SM, Domínguez-Castro F, Reig F (2021) Assessment of parametric approaches to calculate the evaporative demand drought index. Int J Climatol 42(2):834–849. https://doi.org/10.1002/joc.7275

    Article  Google Scholar 

  • Noor M, Ismail T, Shahid S, Ahmed K, Chung ES, Nawaz N (2019) Selection of CMIP5 multi-model ensemble for the projection of spatial and temporal variability of rainfall in Peninsular Malaysia. Theoret Appl Climatol 138:999–1012. https://doi.org/10.1007/s00704-019-02874-0

    Article  Google Scholar 

  • Okkan U, Kirdemir U (2018) Investigation of the behavior of an agricultural operated dam reservoir under RCP scenarios of AR5-IPCC. Water Resour Manage 32(8):2847–2866. https://doi.org/10.1007/s11269-018-1962-0

    Article  Google Scholar 

  • Onuşluel Gül G, Gül A, Najar M (2022) Historical evidence of climate change impact on drought outlook in river basins: analysis of annual maximum drought severities through daily SPI definitions. Nat Hazards 110:1389–1404. https://doi.org/10.1007/s11069-021-04995-0

    Article  Google Scholar 

  • Palmer WC (1965) Meteorological drought. Office of climatology research Paper No. 45, Washington DC: US Weather Bureau

  • Paudel D, Hostikka S (2019) Propagation of model uncertainty in the stochastic simulations of a compartment fire. Fire Technol 55(6):2027–2054. https://doi.org/10.1007/s10694-019-00841-9

    Article  Google Scholar 

  • Piani C, Weedon GP, Best M, Gomes SM, Viterbo P, Hagemann S, Haerter JO (2010) Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J Hydrol 395(3–4):199–215

    Article  Google Scholar 

  • Quiring SM (2009) Monitoring drought: an evaluation of meteorological drought indices. Geogr Compass 3(1):64–88. https://doi.org/10.1111/j.1749-8198.2008.00207x

    Article  Google Scholar 

  • Rahimi R, Tavakol-Davani H, Nasseri M (2021) An uncertainty-based regional comparative analysis on the performance of different bias correction methods in statistical downscaling of precipitation. Water Resour Manage 35(8):2503–2518. https://doi.org/10.1007/s11269-021-02844-0

    Article  Google Scholar 

  • Rathjens H, Bieger K, Srinivasan R, Arnold JG (2016) CMhyd user manual documentation for preparing simulated climate change data for hydrologic impact studies

  • Reddy MJ, Ganguli P (2013) Spatio-temporal analysis and derivation of copula-based intensity–area–frequency curves for droughts in western Rajasthan (India). Stoch Env Res Risk Assess 27(8):1975–1989. https://doi.org/10.1007/s00477-013-0732-z

    Article  Google Scholar 

  • Sachindra DA, Huang F, Barton A, Perera BJ (2014) Statistical downscaling of general circulation model outputs to catchment scale hydroclimatic variables: issues, challenges and possible solutions. J Water Clim Chang 5(4):496–525. https://doi.org/10.2166/wcc.2014.056

    Article  Google Scholar 

  • Salimi H, Asadi E, Darbandi S (2021) Meteorological and hydrological drought monitoring using several drought indices. Appl Water Sci 11(2):1–10. https://doi.org/10.1007/s13201-020-01345-6

    Article  Google Scholar 

  • Schmidli J, Frei C, Vidale PL (2006) Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods. Int J Climatol 26:679–689. https://doi.org/10.1002/joc.1287

    Article  Google Scholar 

  • Sırdaş S, Şen Z (2003) Spatio-temporal drought analysis in the Trakya Region, Turkey. Hydrol Sci J 48(5):809–820. https://doi.org/10.1623/hysj.48.5.809.51458

  • Stagge JH, Tallaksen LM, Gudmundsson L, Van Loon AF, Stahl K (2015) Candidate distributions for climatological drought indices (SPI and SPEI). Int J Climatol 35(13):4027–4040. https://doi.org/10.1002/joc.4267

    Article  Google Scholar 

  • Sun Q, Miao C, Duan Q, Ashouri H, Sorooshian S, Hsu KL (2018) A review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev Geophys 56(1):79–107. https://doi.org/10.1002/2017RG000574

    Article  Google Scholar 

  • Sunyer MA, Hundecha Y, Lawrence D, Madsen H et al (2014) Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe. Hydrol Earth Syst Sci 11:6167–6214. https://doi.org/10.5194/hessd-11-6167-2014

    Article  Google Scholar 

  • Tallaksen LM, van Lanen H (2004) Hydrological drought characteristics. Hydrological drought: processes and estimation methods for streamflow and groundwater. Elsevier, pp 139–198

  • Tallarida RJ, Murray RB (1987) Chi-Square Test. Manual of pharmacologic calculations. Springer, New York. https://doi.org/10.1007/978-1-4612-4974-0_43

  • Tarekegn N, Abate B, Muluneh A, Dile Y (2021) Modeling the impact of climate change on the hydrology of Andasa watershed. Model Earth Syst Environ. https://doi.org/10.1007/s40808-020-01063-7

    Article  Google Scholar 

  • Terink W, Hurkmans RTWL, Torfs PJF, Uijlenhoet R (2010) Evaluation of a bias correction method applied to downscaled precipitation and temperature re-analysis data for the Rhine basin. Hydrol Earth Syst Sci 14(4):687–703. https://doi.org/10.5194/hess-14-687-2010,2010

    Article  Google Scholar 

  • Tomczak M (1998) Spatial interpolation and its uncertainty using automated anisotropic inverse distance weighting (IDW)-cross-validation/jackknife approach. J Geogr Inf Decis Anal 2(2):18–30

    Google Scholar 

  • Tramblay Y, Koutroulis A, Samaniego L, Vicente-Serrano SM, Volaire F, Boone A, Polcher J (2020) Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth Sci Rev 210:103348

    Article  Google Scholar 

  • Tsakiris G, Vangelis H (2004) Towards a drought watch system based on spatial SPI. Water Resour Manage 18(1):1–12. https://doi.org/10.1023/b:warm.0000015410.470

    Article  Google Scholar 

  • Türkeş M, Turp MT, An N, Öztürk T, Kurnaz ML (2020) Impacts of climate change on precipitation climatology and variability in Turkey. Water Resour Turkey 2:467–491. https://doi.org/10.1007/978-3-030-11729-0_14

  • Van Loon AF (2015) Hydrological drought explained. WIREs Water 2(4):359–392. https://doi.org/10.1002/wat2.1085

    Article  Google Scholar 

  • Visser H, Folkert RJ, Hoekstra J, de Wolff JJ (2000) Identifying key sources of uncertainty in climate change projections. Clim Change 45(3/4):421–457. https://doi.org/10.1023/a:1005516020996

    Article  CAS  Google Scholar 

  • Wilby RL (2017) What is the purpose of regional climate downscaling? Cambridge University Press eBooks, pp 67–84. https://doi.org/10.1017/9781316534588.006

  • Yerdelen C, Abdelkader M, Eriş E (2021) Assessment of drought in SPI series using continuous wavelet analysis for Gediz Basin, Turkey. Atmos Res 260:105687. https://doi.org/10.1016/j.atmosres.2021.105687

  • Zhang H, Ding J, Wang Y, Zhou D, Zhu Q (2021) Investigation about the correlation and propagation among meteorological, agricultural and groundwater droughts over humid and arid/semi-arid basins in China. J Hydrol 603:127007. https://doi.org/10.1016/j.jhydrol.2021.127007

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Onur Cem Yoloğlu for his invaluable insight throughout the process and the open-source databases provided by Enes, ECMWF, and GFDL.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Z. Ibrahim Erkol, S. Nur Yesilyurt, and H. Yildirim Dalkilic partook altogether in the processes of material preparation, data collection, analysis, and writing and contributed to the editing and review of the article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Z. Ibrahim Erkol.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Appendix Figs. 12, 13, and 14

Fig. 12
figure 12

Taylor diagrams showing the correlation between downscaled/raw outputs of climate models and re-analysis data (Antalya, Burdur, Mersin, and Isparta)

Fig. 13
figure 13

Probabilistic distribution of precipitation data for Isparta, Mugla, and Mersin

Fig. 14
figure 14

Probabilistic distribution of precipitation data for Burdur, Karaman, and Konya

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erkol, Z.I., Yesilyurt, S.N. & Dalkilic, H.Y. Impacts of climate change on spatial drought distribution in the Mediterranean Basin (Turkey): different climate models and downscaling methods. Theor Appl Climatol 155, 4065–4087 (2024). https://doi.org/10.1007/s00704-024-04867-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-024-04867-0

Keywords

Navigation