Theoretical and Applied Climatology

, Volume 132, Issue 1–2, pp 327–345 | Cite as

Daily precipitation grids for Austria since 1961—development and evaluation of a spatial dataset for hydroclimatic monitoring and modelling

Original Paper
  • 232 Downloads

Abstract

Spatial precipitation datasets that are long-term consistent, highly resolved and extend over several decades are an increasingly popular basis for modelling and monitoring environmental processes and planning tasks in hydrology, agriculture, energy resources management, etc. Here, we present a grid dataset of daily precipitation for Austria meant to promote such applications. It has a grid spacing of 1 km, extends back till 1961 and is continuously updated. It is constructed with the classical two-tier analysis, involving separate interpolations for mean monthly precipitation and daily relative anomalies. The former was accomplished by kriging with topographic predictors as external drift utilising 1249 stations. The latter is based on angular distance weighting and uses 523 stations. The input station network was kept largely stationary over time to avoid artefacts on long-term consistency. Example cases suggest that the new analysis is at least as plausible as previously existing datasets. Cross-validation and comparison against experimental high-resolution observations (WegenerNet) suggest that the accuracy of the dataset depends on interpretation. Users interpreting grid point values as point estimates must expect systematic overestimates for light and underestimates for heavy precipitation as well as substantial random errors. Grid point estimates are typically within a factor of 1.5 from in situ observations. Interpreting grid point values as area mean values, conditional biases are reduced and the magnitude of random errors is considerably smaller. Together with a similar dataset of temperature, the new dataset (SPARTACUS) is an interesting basis for modelling environmental processes, studying climate change impacts and monitoring the climate of Austria.

Notes

Acknowledgements

Special thanks are given to Klaus Haslinger and Michael Hofstätter for thematic discussions and to Ivonne Anders, Harald Bamberger and Marc Olefs for technical support (all ZAMG). We acknowledge the Daymet dataset (Christopher Thurnher, Institute of Silviculture, University of Natural Resources and Life Sciences, Vienna), the E-OBS dataset (Gerard van der Schrier, Royal Netherlands Meteorological Institute) from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu) and WegenerNet data (Jürgen Fuchsberger, Wegener Center for Climate and Global Change, University of Graz). Finally, we thank two anonymous reviewers for their valuable comments. The project GRIDS was funded by the Austrian Federal Ministry of Science, Research and Economy.

References

  1. Aalto J, Pirinen P, Heikkinen J, Venäläinen A (2012) Spatial interpolation of monthly climate data for Finland: comparing the performance of kriging and generalized additive models. Theor Appl Climatol 112:99–111. doi: 10.1007/s00704-012-0716-9 CrossRefGoogle Scholar
  2. Auer I, Potzmann R, Schöner W (2000) Welchen Beitrag leisten Totalisatoren für die Klimaforschung im Hochgebirge? In: 96.–97. Jahresbericht des Sonnblick-Vereines für die Jahre 1998–1999. Sonnblick-Verein, Vienna, pp 22–30Google Scholar
  3. Auer I, Nemec J, Gruber C, Chimani B, Türk K (2010) HOM-START–homogenisation of climate series on a daily basis, an application to the StartClim dataset. Climate and Energy Fund of the Federal State, Vienna. http://www.zamg.ac.at/cms/de/dokumente/klima/dok_projekte/homstart/homstart-endbericht. Accessed 17 Jan 2017
  4. Barancourt C, Creutin JD (1992) A method for delineating and estimating rainfall fields. Water Resour Res 28:1133–1144. doi: 10.1029/91WR02896 CrossRefGoogle Scholar
  5. Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Schamm K, Schneider U, Ziese M (2013) A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst Sci Data 5:71–99. doi: 10.5194/essd-5-71-2013 CrossRefGoogle Scholar
  6. Bénichou P, Le Breton O (1987) Prise en compte de la topographie pour la cartographie des champs pluviométrique. La Météorologie 7:23–34Google Scholar
  7. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B Met 57:289–300. doi: 10.2307/2346101 Google Scholar
  8. Blöschl G, Nester T, Komma J, Parajka J, Perdigão RAP (2013) The June 2013 flood in the Upper Danube Basin, and comparisons with the 2002, 1954 and 1899 floods. Hydrol Earth Syst Sci 17:5197–5212. doi: 10.5194/hess-17-5197-2013 CrossRefGoogle Scholar
  9. Daly C, Neilson RP, Phillips DL (1994) A statistical-topographical model for mapping climatological precipitation over mountainous terrain. J Appl Meteorol 33:140–158. doi: 10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2 CrossRefGoogle Scholar
  10. Daly C, Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor GH, Curtis J, Pasteris PP (2008) Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int J Climatol 28:2031–2064. doi: 10.1002/joc.1688 CrossRefGoogle Scholar
  11. Diggle PJ, Ribeiro PJ (2007) Model-based geostatistics. Springer, New YorkGoogle Scholar
  12. Erdin R, Frei C, Künsch HR (2012) Data transformation and uncertainty in geostatistical combination of radar and rain gauges. J Hydrometeorol 13:1332–1346. doi: 10.1175/JHM-D-11-096.1 CrossRefGoogle Scholar
  13. Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The Shuttle Radar Topography Mission. Rev Geophys 45:RG2004. doi: 10.1029/2005RG000183 CrossRefGoogle Scholar
  14. Frei C (2014) Interpolation of temperature in a mountainous region using nonlinear profiles and non-Euclidean distances. Int J Climatol 34:1585–1605. doi: 10.1002/joc.3786 CrossRefGoogle Scholar
  15. Frei C, Schär C (1998) A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int J Climatol 18:873–900. doi: 10.1002/(SICI)1097-0088(19980630)18:8<873::AID-JOC255>3.0.CO;2-9 CrossRefGoogle Scholar
  16. Frei C, Schär C (2001) Detection probability of trends in rare events: theory and application to heavy precipitations in the Alpine region. J Clim 14:1568–1584. doi: 10.1175/1520-0442(2001)014<1568:DPOTIR>2.0.CO;2 CrossRefGoogle Scholar
  17. Frei C, Willi M, Stöckli R, Dürr B (2015) Spatial analysis of sunshine duration in complex terrain by non-contemporaneous combination of station and satellite data. Int J Climatol 35:4471–4790. doi: 10.1002/joc.4322 CrossRefGoogle Scholar
  18. Goovaerts P (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J Hydrol 228:113–129CrossRefGoogle Scholar
  19. Gottardi F, Obled C, Gailhard J, Paquet E (2012) Statistical reanalysis of precipitation fields based on ground network data and weather patterns: application over French mountains. J Hydrol 432–433:154–167. doi: 10.1016/j.jhydrol.2012.02.014 CrossRefGoogle Scholar
  20. Haiden T, Kann A, Wittmann C, Pistotnik G, Bica B, Gruber C (2011) The integrated nowcasting through comprehensive analysis (INCA) system and its validation over the Eastern Alpine Region. Weather Forecast 26:166–183. doi: 10.1175/2010WAF2222451.1 CrossRefGoogle Scholar
  21. Hamlet AF, Lettenmaier DP (2005) Production of temporally consistent gridded precipitation and temperature fields for the Continental United States. J Hydrometeorol 6:330–336. doi: 10.1175/JHM420.1 CrossRefGoogle Scholar
  22. Hasenauer H, Merganicova K, Petritsch R, Pietscha SA, Thornton PE (2003) Validating daily climate interpolations over complex terrain in Austria. Agric For Meteorol 119:87–107. doi: 10.1016/S0168-1923(03)00114-X CrossRefGoogle Scholar
  23. Haslinger K, Schöner W, Anders I (2015) Future drought probabilities in the Greater Alpine Region based on COSMO-CLM experiments—spatial patterns and driving forces. Meteorol Z. doi: 10.1127/metz/2015/0604 Google Scholar
  24. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119. doi: 10.1029/2008JD010201 CrossRefGoogle Scholar
  25. Hengl R, Heuvelink GBM, Rossiter DG (2007) About regression-kriging: from equations to case studies. Comput Geosci 33:1301–1315. doi: 10.1016/j.cageo.2007.05.001 CrossRefGoogle Scholar
  26. Hiebl J, Frei C (2016) Daily temperature grids for Austria since 1961—concept, creation and applicability. Theor Appl Climatol 124:161–178. doi: 10.1007/s00704-015-1411-4 CrossRefGoogle Scholar
  27. Hofstätter M, Jacobeit J, Homann M, Lexer A, Chimani B, Philipp A, Beck C, Ganekind M (2015) WETRAX—weather patterns, cyclone tracks and related precipitation extremes. Großflächige Starkniederschläge im Klimawandel in Mitteleuropa. Universität Augsburg, Augsburg. http://www.zamg.ac.at/cms/de/dokumente/klima/dok_projekte/wetrax/endbericht. Accessed 17 Jan 2017
  28. Hofstra N, Haylock M, New M, Jones P, Frei C (2008) The comparison of six methods for the interpolation of daily European climate data. J Geophys Res 113. doi: 10.1029/2008JD010100
  29. Hofstra N, New M, McSweeney C (2010) The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data. Clim Dynam 35:841–858. doi: 10.1007/s00382-009-0698-1 CrossRefGoogle Scholar
  30. Hogan RJ, Mason IB (2012) Deterministic forecasts of binary events. In: Jolliffe IT, Stephenson BD (ed) Forecast verification. A practitioner’s guide in atmospheric sciences, 2nd edn. Wiley, Oxford, pp 31–59CrossRefGoogle Scholar
  31. Huss M, Farinotti D, Bauder A, Funk M (2008) Modelling runoff from highly glacierized alpine drainage basins in a changing climate. Hydrol Process 22:3888–3902. doi: 10.1002/hyp.7055 CrossRefGoogle Scholar
  32. Hutchinson MF (1998) Interpolation of rainfall data with thin plate smoothing splines, part I: two dimensional smoothing of data with short range correlation. J Geogr Inf Decis Anal 2:139–151Google Scholar
  33. Isotta FA, Frei C, Weilguni V, Perčec Tadić M, Lassègues P, Rudolf B, Pavan V, Cacciamani C, Antolini G, Ratto SM, Munari M, Micheletti S, Bonati V, Lussana C, Ronchi C, Panettieri E, Marigo G, Vertačnik G (2014) The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int J Climatol 34:1657–1675. doi: 10.1002/joc.3794 CrossRefGoogle Scholar
  34. Kapeller S, Lexer MJ, Geburek T, Hiebl J, Schueler S (2012) Intraspecific variation in climate response of Norway spruce in the eastern Alpine range: selecting appropriate provenances for future climate. Forest Ecol Manag 271:46–57. doi: 10.1016/j.foreco.2012.01.039 CrossRefGoogle Scholar
  35. Kendall MG (1948) Rank correlation methods. Charles Griffin, LondonGoogle Scholar
  36. Kirchengast G, Kabas T, Leuprecht A, Bichler C, Truhetz H (2014) WegenerNet: a pioneering high-resolution network for monitoring weather and climate. Bull Amer Meteor Soc 95:227–242. doi: 10.1175/BAMS-D-11-00161.1 CrossRefGoogle Scholar
  37. Klein Tank AMG, Zwiers FW, Zhang X (2009) Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. World Meteorological Organization, Geneva. http://eca.knmi.nl/documents/WCDMP_72_TD_1500_en_1.pdf. Accessed 17 Jan 2017
  38. Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in global surface air temperature. Theor Appl Climatol 41:11–21CrossRefGoogle Scholar
  39. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259. doi: 10.2307/1907187 CrossRefGoogle Scholar
  40. Masson D, Frei C (2014) Spatial analysis of precipitation in a high-mountain region: exploring methods with multi-scale topographic predictors and circulation types. Hydrol Earth Syst Sci 18:4543–4563. doi: 10.5194/hess-18-4543-2014 CrossRefGoogle Scholar
  41. McCullagh P, Nelder JA (1989) Generalized linear models. Monographs on Statistics and Applied Probability 37. Chapman and Hall, LondonGoogle Scholar
  42. Mergili M, Kerschner H (2015) Gridded precipitation mapping in mountainous terrain combining GRASS and R. Nor Geogr Tidsskr 69:2–17. doi: 10.1080/00291951.2014.992807 CrossRefGoogle Scholar
  43. Olefs M, Schöner W, Suklitsch M, Wittmann C, Niedermoser B, Neururer A, Wurzer A (2013) SNOWGRID – A new operational snow cover model in Austria. International Snow Science Workshop Proceedings 2013:38–45. http://arc.lib.montana.edu/snow-science/item/1785. Accessed 17 Jan 2017
  44. Osborn TJ, Hulme M (1997) Development of a relationship between station and grid-box rainday frequencies for climate model evaluation. J Clim 10:1885–1908. doi: 10.1175/1520-0442(1997)010<1885:DOARBS>2.0.CO;2 CrossRefGoogle Scholar
  45. Parajka J, Blaschke AP, Blöschl G, Haslinger K, Hepp G, Laaha G, Schöner W, Trautvetter H, Viglione A, Zessner M (2015) Uncertainty contributions to low flow projections in Austria. Hydrol Earth Syst Sci Discuss 12:12395–12431. doi: 10.5194/hessd-12-12395-2015 CrossRefGoogle Scholar
  46. Perčec Tadić M (2010) Gridded Croatian climatology for 1961–1990. Theor Appl Climatol 102:87–103. doi: 10.1007/s00704-009-0237-3 CrossRefGoogle Scholar
  47. Prudhomme C, Reed DW (1998) Relationships between extreme daily precipitation and topography in a mountainous region: a case study in Scotland. Int J Climatol 18:1439–1453. doi: 10.1002/(SICI)1097-0088(19981115)18:13<1439::AID-JOC320>3.0.CO;2-7 CrossRefGoogle Scholar
  48. Rauthe M, Steiner H, Ulf R, Mazurkiewicz A, Gratzki A (2013) A Central European precipitation climatology—part I: generation and validation of a high-resolution gridded daily data set (HYRAS). Meteorol Z 22:235–256. doi: 10.1127/0941-2948/2013/0436 CrossRefGoogle Scholar
  49. Richter D (1995) Ergebnisse methodischer Untersuchungen zur Korrektur des systematischen Messfehlers des Hellmann-Niederschlagsmessers. Deutscher Wetterdienst, OffenbachGoogle Scholar
  50. Schabenberger O, Gotway CA (2005) Statistical methods for spatial data analysis. CRC Press, Boca RatonGoogle Scholar
  51. Scherrer SC, Frei C, Croci-Maspoli M, van Geijtenbeek D, Hotz C, Appenzeller C (2011) Operational quality control of daily precipitation using spatio-climatological plausibility testing. Meteorol Z 20:397–407. doi: 10.1127/0941-2948/2011/0236 CrossRefGoogle Scholar
  52. Schmidli J, Schmutz C, Frei C, Wanner H, Schär C (2002) Mesoscale precipitation variability in the region of the European Alps during the 20th century. Int J Climatol 22:1049–1074. doi: 10.1002/joc.769 CrossRefGoogle Scholar
  53. Schöner W, Dos Santos Cardoso E (2004) Datenbereitstellung, Entwicklung von Regionalisierungstools und einer Schnittstelle zu den regionalen Klimamodellen. Zentralanstalt für Meteorologie und Geodynamik, ViennaGoogle Scholar
  54. Sen PK (1968) Estimation of the regression coefficient based on Kendall’s tau. J Amer Stat Assoc 63:1379–1389CrossRefGoogle Scholar
  55. Sevruk B (1985) Systematischer Niederschlagmessfehler in der Schweiz. Der Niederschlag in der Schweiz, Beiträge zur Geologischen Karte der Schweiz-Hydrologie 31:65–75Google Scholar
  56. Shepard DS (1984) Computer mapping: the SYMAP interpolation algorithm. In: Gaile GL, Willmott CJ (eds) Spatial statistics and models. Springer, Dordrecht, pp 133–145CrossRefGoogle Scholar
  57. Sungmin O, Foelsche U, Kirchengast G, Fuchsberger J (2016) Validation and correction of rainfall data from the WegenerNet high density network in southeast Austria. J Hydrol. doi: 10.1016/j.jhydrol.2016.11.049 Google Scholar
  58. Theil H (1950) A rank-invariant method of linear and polynomial regression analysis. Parts 1–3. Nederlands Akad Wetensch Proc 53:386–392, 521–525, 1397–1412Google Scholar
  59. Thornton PE, Running SW, White MA (1997) Generating surfaces of daily meteorological variables over large regions of complex terrain. J Hydrol 190:214–251CrossRefGoogle Scholar
  60. Van Bebber WJ (1891) Die Zugstrassen der barometrischen Minima nach den Bahnenkarten der Deutschen Seewarte für den Zeitraum 1875–1890. Meteorol Z 8:361–366Google Scholar
  61. Wilks DS (2011) Statistical methods in the atmospheric sciences. Academic Press, OxfordGoogle Scholar
  62. Wilks D (2016) “The stippling shows statistically significant gridpoints”: how research results are routinely overstated and over-interpreted, and what to do about it. Bull Amer Meteor Soc 97:2263–2273. doi: 10.1175/BAMS-D-15-00267.1
  63. Xie PP, Rudolf B, Schneider U, Arkin PA (1996) Gauge-based monthly analysis of global land precipitation from 1971 to 1994. J Geophys Res 101:19023–19034. doi: 10.1029/96JD01553 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Zentralanstalt für Meteorologie und Geodynamik (ZAMG)ViennaAustria
  2. 2.Federal Office of Meteorology and Climatology (MeteoSwiss)Zürich-FlughafenSwitzerland

Personalised recommendations